SciFinder Web

源于化学,超越化学的一站式检索平台

SciFinder Web 培训

CAS北京代表处 培训专员

李虹

Mail:Della@igroup.com.cn

Tel:010-82335058-807

提纲

- 介绍
 - SciFinder Web内容
- SciFinder Web中的检索
 - SciFinder中的文献检索
 - SciFinder中的结构面板使用技巧
 - SciFinder中的物质结果及物质检索方法
 - SciFinder中的反应检索

■ SciFinder Web的注册和常见问题

美国化学文摘社—Chemical Abstract Service

- ACS的分支机构,创立于1907年
- 致力于跟踪、索引并提炼全球化学相关的科技文献信息
- 最先创立了纸本《化学文摘》

Chemical Abstracts TM

■ 总部位于俄亥俄州的哥伦布市

- 1300名员工,精通50多种语言。
- 关注索引上万种期刊和63家专利
- 客户覆盖全球1900所高校、500 强公司以及所有主要的专利局。

SciFinder Web中的几个主要数据库

CAS REGISTRYSM

- >7300万有机无机物质
- >6400生物序列

每天更新约12000新物质

物质报道文献,回溯到1802年

物质信息包含了大量的实验数据,预测数据,以及物质标签和谱图

CASREACT®

>6700万单步和多步反应

>1400万物质合成制备信息

源自专利和期刊文献

每天更新

反应回溯到1840年

CAS Databases

CAplusSM

- >3800万专利和期刊信息
- >10000种期刊的覆盖
- 63个专利发行机构

每天更新3000条记录

文献回溯到19世纪初

引文信息回溯到1997年之前,超过3亿条引文信息

MARPART®

>99.6万专利中的有机,有机金属结构

回溯至1961年

每天更新(60-75篇专利引文,以及150-200个Markush结构)

CAplusSM 涵盖了上万种期刊及63个专利发行机构专利

CAS Registry 是世界上最大的化学物质数据库

CASREACT® 是检索化学反应最权威的来源

CASREACT是世界上最大的,更新速度最快的反应数据库

- >5100万 单步和多步反应
- >1360万物质合成制备信息
- 源自专利和期刊
- 可回溯到1840年
- 每天更新

提纲

- 介绍
 - SciFinder Web内容
- SciFinder Web中的检索
 - SciFinder中的文献检索
 - SciFinder中的结构面板使用技巧
 - SciFinder中的物质结果及物质检索方法
 - SciFinder中的反应检索

■ SciFinder Web的注册和常见问题

SciFinder Web登陆界面—http://scifinder.cas.org

SciFinder中的文献记录

Citations Bielanski, A; Oxygen in Catalysis 1991 Haber, J; ACS Symp Series 1996, 638, 20 Q Oyama, S; ACS Symp Series 1996, 638, 2 Q Lee, J; Catal Rev-Sci Eng 1988, 30, 249 Q Kung, H; Adv Catal 1994, 40, 1 Q Vedrine, J; Catal Today 1997, 33, 3 Q Vedrine, J; Catal Today 1996, 32, 115 Q Busca, G; Catal Today 1996, 32, 133 Q Cavani, F; Catalysis 1994, 11, 246 Q Albonetti, S; Catal Rev-Sci Eng 1996, 38, 413 Q Sokolovskii, V; Catal Rev-Sci Eng 1990, 32, 1 Q Delmon, B; Catalysts in Petroleum Refining and Petrochemical Industries 1995 1996 Burch, R; J Mol Catal A 1995, 100, 13 Q Schmidt, L; Chem Eng Sci 1994, 49, 3981 Q Kung, H; ACS Symp Series 1993, 523, 387 Trifiro, F; Selective Partial Oxidation of Hydrocarbons and Related Oxidations 1994 Trifiro, F; Oxidative dehydrogenation and alternative dehydrogenation processes 1993 Cavani, F; Catal Today 1995, 24, 307 Q

- 一篇完整的文献界面包括:
- 1. 题录信息
- 2. 摘要信息
- 3. 文献中重要的概念
- 4. 文献中重要的物质
- 5. 书目信息
- 6. 获得文献中的物质,反应,引 文等
- 7. 文献中的引文信息

SciFinder中的文献检索方法

功能方面

- 主题检索
- 作者名检索
- 机构名检索
- 文献标示符检索
- 从物质,反应获得文献

检索方法推荐

- 关注某特定领域的文献——主题检索
- 关注某科研人员的文献——-作者名检索

SciFinder中的主题检索

主题词: Nanomaterials with magnetic

术语之间最好用英文的介词如 of, with, beyond, in, on, as 等连接; 最多输入 5 个术语, 2~3个左右最好

SciFinder中的候选选项

关键词拼写上的变化及同义词都会会被检索到 通常,第二项有"concept"和"closely associated with one another"的选项是更好的选择

SciFinder中的引文排序

选择sort by里的citing reference 可以获得被引用次数最多的文献

SciFinder中的文献筛选工具

关键词高亮显示

Analyse-作者姓名分析

Garno Jayne C在此领域发表了16篇文献

点击Apply获 得相应作者的 文献

Analyse-CA Section Title分析

CA Section Title帮助分析主要的应用领域

磁性纳米材料主要应用的领域: 有磁现象,制药,电现象,表 面化学和胶体等

Analyse-索引词分析

Index Term帮助分析文献中出现的重要内容

直接点击感兴趣的 内容获得相应文献

Analyse-机构名称,期刊名称,CAS No分析

Analyze	Refine	Categorize
Analyze b		~
Faming Z Shenqing	huanli	153
PCT Int. A	Appl.	22
Journal of and Magr Materials	f Magnetis netic	<u>m</u>
Faming Z Shenqing Shuoming	Gongkai	17
U.S. Pat.	Appl. Publ	. 14
Journal of Compoun	f Alloys an ds	d 13
arXiv.org, Archive, (Matter	, e Print Condensed	12
Physical F Condense Materials	ed Matter a	and 11
Journal of Chemistry	f Materials /	10
Jpn. Koka Koho	i Tokkyo	9

Refine-主题词限定

Refine-文献类型限定

从文献获得物质

系统分类功能

Categorize—基于CAS索引获得更多详细的信息

定题服务功能

保存,打印,导出

到CAS 的服务器上

提纲

- 介绍
 - SciFinder Web新界面
- SciFinder Web中的检索
 - SciFinder中的文献检索
 - SciFinder中的结构面板使用技巧
 - SciFinder中的物质结果及物质检索方法
 - SciFinder中的反应检索

■ SciFinder Web的注册和常见问题

SciFinder结构绘制工具

SciFinder中的反应定义工具

提纲

- 介绍
 - SciFinder Web新界面
- SciFinder Web中的检索
 - SciFinder中的文献检索
 - SciFinder中的结构面板使用技巧
 - SciFinder中的物质结果及物质检索方法
 - SciFinder中的反应检索

■ SciFinder Web的注册和常见问题

SciFinder中的物质结果界面

一个完整的物质结果 界面包含:

- •物质详情连接
- •文献连接
- •反应连接
- •商品信息连接
- •管制品信息连接
- •谱图连接
- •实验性质连接

物质的的CAS号、分子式、结 构式、化学名、别名

按照CAS Role分类 的专利、非专利文献 列表。对某类文献感 兴趣,仅需点击交叉 处的 即可方便快捷 地获取。

CAS Role	Patents	Nonpatents	Nonspecific Derivatives from Patents	Nonspecific Derivatives from Nonpatents
Analytical Study	✓	✓	✓	✓
Biological Study	1	€	✓	✓
Formation, Nonpreparative		1	✓	✓
Miscellaneous	1	V		
Occurrence	1	€		✓
Preparation	1	✓	✓	✓
Process	1	1	✓	✓
Properties	1	✓	✓	✓
Prophetic in Patents	1			
Reactant or Reagent	V	✓	✓	✓
Uses	1	1	✓	✓

RNA formation factors (all) >>>

Transport proteins (all) >> P-glycoproteins

Transcription factor NF-kB

21

物质的生物活性和靶点信息,直接点击,获得相关文献

CAS is a division of the American Chemical Society.

Biological Properties	Value	Condition	Note T
Bioconcentration Factor	31.2	pH 1 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 2 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 3 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 4 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 5 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 6 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 7 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 8 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 9 Temp: 25 °C	(26)
Bioconcentration Factor	31.2	pH 10 Temp: 25 °C	(26)

Lipinski and Related Properties	Value	Condition	Note	Тор
Freely Rotatable Bonds	0		(26)	
H Acceptors	5		(26)	
H Donors	0		(26)	
H Donor/Acceptor Sum	5		(26)	
logP	2.269±0.680	Temp: 25 °C	(26)	
Molecular Weight	282.33		(26)	
Spectra Properties	Value	Condition	Note	Тор
Carbon-13 NMR Spectrum	See spectrum		(27)	
Proton NMR Spectrum	See spectrum		(27)	

Biological Properties	Value	Condition	Note	Тор
ADME (Absorption, Distribution, Metabolism, Excretion)	See full text		(1)CAS	
Half-Life (Biological)	See full text	1 of 2	(9)CAS	
Median Lethal Dose(LD50)	5576 mg/kg	Organism: rat Route: oral	(14)APC	
Median Lethal Dose(LD50)	5105 mg/kg	Organism: mouse Route: oral	(14)APC	
Median Lethal Dose(LD50)	2800 mg/kg	Organism: mouse Route: intramuscular	(14)APC	
Median Lethal Dose(LD50)	2571 mg/kg	Organism: rat Route: intramuscular	(14)APC	
Median Lethal Dose(LD50)	1558 mg/kg	Organism: mouse Route: intraperitoneal	(14)APC	
Minimum Inhibitory Concentration	See full text	1 of 2	(18)CAS	

Lipinski and Related Properties	Value	Condition	Note	Тор
logP	See full text	1 of 2	(12)CAS	
Optical and Scattering Properties	Value	Condition	Note	Тор
Optical Rotatory Power	+87.9 °	Solv: 1,4-dioxane (123-91-1); Wavlen: 589.3 nm	(20)CAS	
Optical Rotatory Power	+75-+78 °	Conc: 1.0 g/100mL; Solv: ethanol (64-17-5); Wavlen: 589.3 nm; Temp: 20 °C	(12)CAS	
Optical Rotatory Power	+68.2 °	Conc: 0.97 g/100mL; Solv: chloroform (67-66-3); Temp: 25 °C	(16)IC	

Spectra Properties	Value	Condition	Note Top
Carbon-13 NMR Spectrum	See full text	1 of 8	(3)CAS
Circular Dichroism Spectrum	See full text	1 of 2	(4)IC
IR Absorption Spectrum	See full text	1 of 11	(11)CAS
Mass Spectrum	See spectrum		(13)WSS
Mass Spectrum	See spectrum		(13)WSS
Mass Spectrum	See full text	1 of 10	(1)CAS
Proton NMR Spectrum	See full text	1 of 10	(15)CAS
Raman Spectrum	See full text	1 of 2	(5)CAS
Two-Dimensional NMR Spectrum	See full text	1 of 2	(24)CAS
UV and Visible Absorption Spectrum	See full text		(22)CAS
UV and Visible Emission/Luminescence Spectrum	See full text		(25)CAS

物质的实验谱图

物质有关的反应

物质有关的商业来源

物质有关的文献信息

SciFinder中的物质检索方法

- 功能方面
 - 物质名称, CAS No
 - 分子式
 - 结构式
 - 理化性质
- 推荐的物质检索功能
 - 有机物,天然产物及衍生物
 - 无机物
 - 高分子化合物

- ---结构比较方便
- ---分子式比较方便
- ---首先分子式, 其次结构

物质名称检索

直接输入物质的名称,CAS No,俗名,都能检索,一次最多检索25个物质,用换行换开

理化性质检索

分子式检索

分子式的检索,根据hill排序规则书写,C,H写在前面,其他元素按照字母顺序写

分子式检索

- 多组分物质
 - 包含盐,水合物,合金,混合物等
 - 用"」"将不同组分点开

Hill排序

- 单一组分物质
 - 对于不含C的物质,按照字母顺序排序
 - 对于含C的物质, CH写在前面, 其他的按照字母顺序排列
 - 相邻的两个元素之间必须有区分号,即数字或者空格,倘若数字为1,那么可以用空格来区分
 - 区分大小写
- 多组分物质
 - 每一组分必须遵照单一组分物质的分子式来书写。
 - 不同组分之间的排序按照各组分的首元素的字母顺序排序,但是含C组分的一定排在不含C的组分前面。
 - 倘若不同组分的首元素相同,则看元素数量多少,数量多的排在前面,若元素数量一样,则按次元素的顺序排列。

聚合物

■ 聚合物

- 用括号,表示聚合物
- 只知道起始原料的聚合物, X表示
- 知道最终的SRU片段的,N表示

(C8 H8 Br2 . C4 H6 O4)x

(C12 H12 O4)n

结构式检索—精确检索

需要安装Java插件,才能启动结构面板

知道起始原料的聚合物检索

- 检索由1,3-丁二烯(CH2=CH-CH=CH2)和苯乙烯(C6H5C2H3)聚合产生的聚合物
- 只绘制单体,精确结构

使用精确结构检索

结构检索界面

检索结果页面

看名字的区别Triblock, Graft, Diblock, 无序

我想获得以下的一系列物质

结构定义

用亚结构检索获得所有的物质

亚结构检索结果

提纲

- 介绍
 - SciFinder Web新界面
- SciFinder Web中的检索
 - SciFinder中的文献检索
 - SciFinder中的结构面板使用技巧
 - SciFinder中的物质结果及物质检索方法
 - SciFinder中的反应检索

■ SciFinder Web的注册和常见问题

聚合物化学反应检索

聚合反应:

 $CH2=CH-CH=CH2+C6H5-CH=CH2 \\ \longrightarrow -[CH2-CH=CH-CH2-CH(C6H5)-CH2]-n$

1,变化只适用 于指定的结构 的位置

2复杂结构中的亚结构

检索页面以及结果

按照文献出处分类显示

按照反应类型分类显示

Transformation 帮助我们判断大部分的研究人员采用哪种合成方法

按照试剂进行分析

有242篇文献都用的是BuLi这个试剂

按照实验过程进行排序

导航条

提纲

- 介绍
 - SciFinder Web新界面
- SciFinder Web中的检索
 - SciFinder中的文献检索
 - SciFinder中的结构面板使用技巧
 - SciFinder中的物质结果及物质检索方法
 - SciFinder中的反应检索

■ SciFinder Web的注册和常见问题

SciFinder Web的注册和登陆

SciFinder Web的系统要求

Windows用户支持IE 7.x或者FireFox 2.x

Mac 用户支持 Firefox 和 Safari

Java 安装(初次使用结构时自动安装,建议安装Java 6)

在图书馆相关页面上找到SciFinder Web注册用的网址

点击URL创建SciFinder Web账号

设置用户名及密码注意事项

用户名:

必须是唯一的,且包含 5-15 个字符。它可以只包含字母或字母组合、数字和/或以下特殊字符:

- (破折号)

_ (下划线)

. (句点)

@ (表示"at"的符号)

密码:

必须包含 7-15 个字符,并且至少包含三个以下字符:

字母

混合的大小写字母

数字

非字母数字的字符(例如@、#、%、&、*)

密码设置小技巧:

1: 不要和账号中有重复的字符

2: 密码格式最好是abc@123

对新ID的Email确认

SciFinder Web 常见问题

账号或密码错误,请在username处填写,截图,并与图书馆联系

SciFinder Web 常见问题

任何需要反馈给图书馆的问题,都请点击测试IP地址的链接

http://www.cas.org/cgi-bin/casip

Your IP address comes across to CAS as: 210.32.9.45

将页面截图下来,一并发给图书馆

SciFinder Web网络在线资源平台

www.igroup.com.cn/cas

资源下载: PDF文件

在线演示: Flash演示

网络培训:不定期的网络专题培训

SciFinder Web使用注意事项

- 禁止过量下载
- 严禁账号分享
- 严禁将账号用于非学术研究

Comprehensive Content

Sophisticated Analysis

Unprecedented Results

Thank You

李虹

SciFinder 培训专员

Mail: Della@igroup.com.cn

Tel:010-82335058-807