新书报道
当前位置: 首页 >> 法律经济管理 >> 正文
BioCeramics with Clinical Applications
发布日期:2015-10-26  浏览

BioCeramics with Clinical Applications

[Book Description]

This publication offers a unique approach that links the materials science of bioceramics to clinical needs and applications. Providing a structured account of this highly active area of research, the book reviews the clinical applications in bone tissue engineering, bone regeneration, joint replacement, drug-delivery systems and biomimetism, this book is an ideal resource for materials scientists and engineers, as well as for clinicians. From the contents: Part I Introduction 1. Bioceramics 2. Biomimetics Part II Materials 3. Calcium Phosphate Bioceramics 4. Silica-based Ceramics: Glasses 5. Silica-based Ceramics: Mesoporous Silica 6. Alumina, Zirconia, and Other Non-oxide Inert Bioceramics 7. Carbon-based Materials in Biomedicine Part III Material Shaping 8. Cements 9. Bioceramic Coatings for Medical Implants 10. Scaffold Designing Part IV Research on Future Ceramics 11. Bone Biology and Regeneration 12. Ceramics for Drug Delivery 13. Ceramics for Gene Transfection 14. Ceramic Nanoparticles for Cancer Treatment

[Table of Contents]

List Of Contributors                       xiii
Preface xv
Part I Introduction 1 (22)
1 Bioceramics 3 (14)
Maria Vallet-Regi
1.1 Introduction 3 (1)
1.2 Reactivity of the Bioceramics 4 (2)
1.3 First, Second, and Third Generations 6 (1)
of Bioceramics
1.4 Multidisciplinary Field 7 (1)
1.5 Solutions for Bone Repairing 8 (5)
1.6 Biomedical Engineering 13 (4)
Recommended Reading 15 (2)
2 Biomimetics 17 (6)
Maria Vallet-Regi
2.1 Biomimetics 17 (1)
2.2 Formation of Hard Tissues 18 (1)
2.3 Biominerals versus Biomaterials 19 (4)
Recommended Reading 22 (1)
Part II Materials 23 (170)
3 Calcium Phosphate Bioceramics 25 (48)
Daniel Arcos
3.1 History of Calcium Phosphate 25 (1)
Biomaterials
3.2 Generalities of Calcium Phosphates 26 (2)
3.3 In vivo Response of Calcium Phosphate 28 (2)
Bioceramics
3.4 Calcium Hydroxyapatite-Based 30 (20)
Bioceramics
3.4.1 Stoichiometric Hydroxyapatite (HA) 31 (6)
3.4.2 Calcium Deficient Hydroxyapatites 37 (2)
(CDHA)
3.4.3 Carbonated Hydroxyapatites (CHA) 39 (1)
3.4.4 Silicon-Substituted 40 (5)
Hydroxyapatite (Si-HA)
3.4.5 Hydroxyapatites of Natural Origin 45 (5)
3.5 Tricalcium Phosphate-Based Bioceramics 50 (5)
3.5.1 β-Tricalcium Phosphate 50 (3)
(β-TCP)
3.5.2 α-Tricalcium Phosphate 53 (2)
(α-TCP)
3.6 Biphasic Calcium Phosphates (BCP) 55 (2)
3.6.1 Chemical and Structural Properties 55 (1)
3.6.2 Preparation Methods 56 (1)
3.6.3 Clinical Applications 56 (1)
3.7 Calcium Phosphate Nanoparticles 57 (3)
3.7.1 General Properties and Scope of 57 (1)
Calcium Phosphate Nanoparticles
3.7.2 Preparation Methods of CaP 58 (2)
Nanoparticles
3.7.3 Clinical Applications 60 (1)
3.8 Calcium Phosphate Advanced 60 (13)
Biomaterials
3.8.1 Scaffolds for in situ Bone 60 (2)
Regeneration and Tissue Engineering
3.8.2 Drug Delivery Systems 62 (3)
References 65 (8)
4 Silica-based Ceramics: Glasses 73 (36)
Antonio J. Salinas
4.1 Introduction 73 (5)
4.1.1 What Is a Glass? 73 (2)
4.1.2 Properties of Glasses 75 (1)
4.1.3 Structure of Glasses 75 (1)
4.1.4 Synthesis of Glasses 76 (2)
4.2 Glasses as Biomaterials 78 (4)
4.2.1 First Bioactive Glasses (BGs): 79 (1)
Melt-Prepared Glasses (MPGs)
4.2.2 Other Bioactive MPGs 80 (1)
4.2.3 Bioactivity Index and Network 80 (1)
Connectivity
4.2.4 Mechanism of Bioactivity 81 (1)
4.3 Increasing the Bioactivity of 82 (13)
Glasses: New Methods of Synthesis
4.3.1 Sol-Gel Glasses (SGGs) 82 (2)
4.3.2 Composition, Texture, and 84 (2)
Bioactivity of SSGs
4.3.3 Biocompatibility of SGGs 86 (1)
4.3.4 SGGs as Bioactivity Accelerators 86 (2)
in Biphasic Materials
4.3.5 Template Glasses (TGs) Bioactive 88 (3)
Glasses with Ordered Mesoporosity
4.3.6 Atomic Length Scale in BGs: How 91 (2)
the Local Structure Affects Bioactivity
4.3.7 New Reformulation of Hench's 93 (1)
Mechanism for TGs
4.3.8 Including Therapeutic Inorganic 94 (1)
Ions in the Glass Composition
4.4 Strengthening and Adding New 95 (4)
Capabilities to Bioactive Glasses
4.4.1 Glass Ceramics (GCs) 95 (2)
4.4.2 Composites Containing Bioactive 97 (1)
Glasses
4.4.3 Sol-Gel Organic-Inorganic Hybrids 98 (1)
(O-IHs)
4.5 Non-silicate Glasses 99 (2)
4.5.1 Phosphate Glasses 99 (1)
4.5.2 Borate Glasses 100 (1)
4.6 Clinical Applications of Glasses 101 (8)
4.6.1 Bioactive Silica Glasses 101 (5)
4.6.2 Inert Silica Glasses 106 (1)
4.6.3 Phosphate Glasses 106 (1)
4.6.4 Borate Glasses 107 (1)
Recommended Reading 107 (2)
5 Silica-based Ceramics: Mesoporous Silica 109 (44)
Montserrat Colilla
5.1 Introduction 109 (1)
5.2 Discovery of Ordered Mesoporous 110 (1)
Silicas
5.3 Synthesis of Ordered Mesoporous 111 (8)
Silicas
5.3.1 Hydrothermal Synthesis 112 (7)
5.3.2 Evaporation-Induced Self-Assembly 119 (1)
(EISA) Method
5.4 Mechanisms of Mesostructure Formation 119 (3)
5.5 Tuning the Structural Properties of 122 (10)
Mesoporous Silicas
5.5.1 Micellar Mesostructure 123 (5)
5.5.2 Type of Mesoporous Structure 128 (3)
5.5.3 Mesopore Size 131 (1)
5.6 Structural Characterization of 132 (3)
Mesoporous Silicas
5.7 Synthesis of Spherical Mesoporous 135 (3)
Silica Nanoparticles
5.7.1 Aerosol-Assisted Synthesis 136 (1)
5.7.2 Modified Stober Method 137 (1)
5.8 Organic Functionalization of Ordered 138 (15)
Mesoporous Silicas
5.8.1 Post-synthesis Functionalization 139 (1)
("Grafting")
5.8.2 Co-condensation ("One-Pot" 140 (1)
Synthesis)
5.8.3 Periodic Mesoporous Organosilicas 141 (1)
References 141 (12)
6 Alumina, Zirconia, and Other Non-oxide 153 (22)
Inert Bioceramics
Juan Pena Lopez
6.1 A Perspective on the Clinical 153 (7)
Application of Alumina and Zirconia
6.1.1 Alumina 155 (3)
6.1.2 Zirconia 158 (2)
6.2 Novel Strategies Based on Alumina and 160 (3)
Zirconia Ceramics
6.2.1 From Alumina Toughened Zirconia 160 (1)
to Alumina Matrix Composite
6.2.2 Introduction of Different Species 161 (1)
in Zirconia
6.2.3 Improvement of Surface Adhesion 162 (1)
6.3 Non-oxidized Ceramics 163 (12)
6.3.1 Silicon Nitride (Si3N4) 163 (1)
6.3.2 Silicon Carbide (SiC) 164 (1)
References 164 (11)
7 Carbon-based Materials in Biomedicine 175 (18)
Mercedes Vila
7.1 Introduction 175 (1)
7.2 Carbon Allotropes 175 (11)
7.2.1 Pyrolytic Carbon 176 (1)
7.2.2 Carbon Fibers 177 (1)
7.2.3 Fullerenes 177 (2)
7.2.4 Carbon Nanotubes 179 (2)
7.2.5 Graphene 181 (3)
7.2.6 Diamond and Amorphous Carbon 184 (2)
7.3 Carbon Compounds 186 (7)
7.3.1 Silicon Carbide 186 (1)
7.3.2 Boron Carbide 187 (1)
7.3.3 Tungsten Carbide 188 (1)
References 188 (5)
Part III Material Shaping 193 (122)
8 Cements 195 (54)
Oscar Castano
Josep A. Planell
Abbreviations 195 (1)
Glossary 196 (1)
8.1 Introduction 197 (9)
8.1.1 Brief History 197 (2)
8.1.2 Definition and Chemistry 199 (1)
8.1.3 Description of the Different CaP 200 (1)
Cements
8.1.4 State of the Art 201 (5)
8.2 Calcium Phosphate Cements 206 (23)
8.2.1 Types 206 (1)
8.2.2 Mechanisms 206 (1)
8.2.3 Relevant Experimental Variables 207 (4)
8.2.4 Material Characterization 211 (9)
8.2.5 Reaction Evolution of Cements 220 (2)
8.2.6 Additives and Strategies to 222 (2)
Enhance Properties
8.2.7 Biological Characterization and 224 (5)
Bioactive Behavior
8.3 Applications 229 (3)
8.3.1 Bone Defect Repair 229 (3)
8.3.2 Drug Delivery Systems 232 (1)
8.4 Future Trends 232 (1)
8.5 Conclusions 233 (16)
References 234 (15)
9 Bioceramic Coatings for Medical Implants 249 (42)
M. Victoria Cabanas
9.1 Introduction 249 (1)
9.2 Methods to Modify the Surface of an 250 (8)
Implant
9.2.1 Deposited Coatings 251 (6)
9.2.2 Conversion Coatings 257 (1)
9.3 Bioactive Ceramic Coatings 258 (14)
9.3.1 Clinical Applications 259 (1)
9.3.2 Calcium Phosphates-Based Coatings 260 (8)
9.3.3 Silica-based Coatings: Glass and 268 (2)
Glass-Ceramics
9.3.4 Bioactive Ceramic Layer Formation 270 (2)
on a Metallic Substrate
9.4 Bioinert Ceramic Coatings 272 (19)
9.4.1 Titanium Nitride and Zirconia 273 (2)
Coatings
9.4.2 Carbon-based Coatings 275 (4)
References 279 (12)
10 Scaffold Designing 291 (24)
Isabel Izquierdo-Barba
10.1 Introduction 291 (2)
10.2 Essential Requirements for Bone 293 (3)
Tissue Engineering Scaffolds
10.3 Scaffold Processing Techniques 296 (19)
10.3.1 Foam Scaffolds 297 (4)
10.3.2 Rapid Prototyping Scaffolds 301 (4)
10.3.3 Electrospinning Scaffolds 305 (2)
References 307 (8)
Part IV Research on Future Ceramics 315 (142)
11 Bone Biology and Regeneration 317 (26)
Soledad Perez-Amodio
Elisabeth Engel
11.1 Introduction 317 (1)
11.2 The Skeleton 318 (2)
11.3 Bone Remodeling 320 (2)
11.4 Bone Cells 322 (5)
11.4.1 Bone Lining Cells 322 (1)
11.4.2 Osteoblasts 323 (1)
11.4.3 Osteocytes 323 (1)
11.4.4 Osteoclasts 324 (3)
11.5 Bone Extracellular Matrix 327 (1)
11.6 Bone Diseases 327 (2)
11.6.1 Osteoporosis 328 (1)
11.6.2 Paget's Disease 329 (1)
11.6.3 Osteomalacia 329 (1)
11.6.4 Osteogenesis Imperfecta 329 (1)
11.7 Bone Mechanics 329 (4)
11.8 Bone Tissue Regeneration 333 (3)
11.8.1 Calcium Phosphate and 333 (1)
Silica-based Bioceramics
11.8.2 Bioactive Glasses 334 (1)
11.8.3 Calcium Phosphate Cements 335 (1)
11.9 Conclusions 336 (7)
References 336 (7)
12 Ceramics for Drug Delivery 343 (40)
Miguel Manzano
12.1 Introduction 343 (1)
12.2 Drug Delivery 344 (2)
12.3 Drug Delivery from Calcium Phosphates 346 (5)
12.3.1 Drug Delivery from Hydroxyapatite 346 (2)
12.3.2 Drug Delivery from Tricalcium 348 (1)
Phosphates
12.3.3 Drug Delivery from Calcium 348 (3)
Phosphate Cements
12.4 Drug Delivery from Silica-based 351 (12)
Ceramics
12.4.1 Drug Delivery from Glasses 351 (4)
12.4.2 Drug Delivery from Mesoporous 355 (8)
Silica
12.5 Drug Delivery from Carbon Nanotubes 363 (2)
12.6 Drug Delivery from Ceramic Coatings 365 (18)
References 366 (17)
13 Ceramics for Gene Transfection 383 (38)
Blanca Gonzalez
13.1 Gene Transfection 383 (3)
13.2 Gene Transfection Based on Nonviral 386 (2)
Vectors
13.3 Ceramic Nanoparticles for Gene 388 (33)
Transfection
13.3.1 Calcium Phosphate Nanoparticles 391 (2)
13.3.2 Mesoporous Silica Nanoparticles 393 (4)
13.3.3 Carbon Allotropes (Fullerenes, 397 (6)
CNTs, Graphene Oxide)
13.3.4 Magnetic Iron Oxide Nanoparticles 403 (7)
References 410 (11)
14 Ceramic Nanoparticles for Cancer 421 (36)
Treatment
Alejandro Baeza
14.1 Delivery of Nanocarriers to Solid 421 (3)
Tumors
14.1.1 Special Issues of Tumor 422 (1)
Vasculature: Enhanced Permeation and
Retention Effect (EPR)
14.1.2 Tumor Microenvironment 423 (1)
14.2 Ceramic Nanoparticle 424 (4)
Pharmacokinetics in Cancer Treatment
14.2.1 Biodistribution and 424 (2)
Excretion/Clearance Pathways
14.2.2 Toxicity of the Ceramic 426 (2)
Nanoparticles
14.3 Cancer-targeted Therapy 428 (6)
14.3.1 Endocytic Mechanism of Targeted 428 (2)
Drug Delivery
14.3.2 Specific Tumor Active Targeting 430 (2)
14.3.3 Angiogenesis-associated Active 432 (2)
Targeting
14.4 Ceramic Nanoparticles for Cancer 434 (9)
Treatment
14.4.1 Mesoporous Silica Nanoparticles 434 (6)
14.4.2 Calcium Phosphates Nanoparticles 440 (1)
14.4.3 Carbon Allotropes 440 (2)
14.4.4 Iron Oxide Nanoparticles and 442 (1)
Hyperthermia
14.5 Imaging and Theranostic Applications 443 (14)
References 446 (11)
Index 457

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上