新书报道
当前位置: 首页 >> 土木工程建筑 >> 正文
Thermal Stresses and Temperature Control of Mass Concrete
发布日期:2015-07-16  浏览

Thermal Stresses and Temperature Control of Mass Concrete

[BOOK DESCRIPTION]

Methods of controlling mass concrete temperatures range from relatively simple to complex and from inexpensive too costly. Depending on a particular situation, it may be advantageous to use one or more methods over others. Based on the author's 50 years of personal experience in designing mass concrete structures, Thermal Stresses and Temperature Control of Mass Concrete provides a clear and rigorous guide to selecting the right techniques to meet project-specific and financial needs. New techniques such as long time superficial thermal insulation, comprehensive temperature control, and MgO self-expansive concrete are introduced. Features: methods for calculating the temperature field and thermal stresses in dams, docks, tunnels, and concrete blocks and beams on elastic foundations; thermal stress computations that take into account the influences of all factors and simulate the process of construction; analytical methods for determining thermal and mechanical properties of concrete; formulas for determining water temperature in reservoirs and temperature loading of arched dams; and new numerical monitoring methods for mass and semi-mature aged concrete.

[TABLE OF CONTENTS]
Preface                                            xix
About the Author                                   xxiii
    1 Introduction                                 1    (10)
      1.1 The Significance of Thermal Stress in    1    (2)
      Mass Concrete
      1.2 The Features of Thermal Stresses in      3    (1)
      Concrete Structures
      1.3 The Variation of Temperature and         4    (2)
      Thermal Stress of Mass Concrete with Time
        1.3.1 The Variation of Temperature of      4    (1)
        Mass Concrete with Time
        1.3.2 The Variation of the Thermal         5    (1)
        Stress in Mass Concrete
      1.4 Kinds of Thermal Stress                  6    (1)
      1.5 Analysis of Thermal Stress of a          6    (1)
      Massive Concrete Structure
      1.6 Thermal Stress---The Cause of Crack      7    (1)
      1.7 Technical Measures for Control of        8    (2)
      Thermal Stress and Prevention of Cracking
      1.8 The Experience of the Temperature        10   (1)
      Control and Crack Prevention of Mass
      Concrete in the Last 30 Years
    2 Conduction of Heat in Mass Concrete,         11   (38)
    Boundary Conditions, and Methods of Solution
      2.1 Differential Equation of Heat            11   (5)
      Conduction, Initial and Boundary
      Conditions
        2.1.1 Differential Equation of Heat        11   (1)
        Conduction
        2.1.2 Initial Condition                    12   (1)
        2.1.3 Boundary Conditions                  13   (1)
        2.1.4 The Approximate Treatment of the     14   (2)
        Third Kind of Boundary Condition
      2.2 Surface Conductance and Computation      16   (3)
      of Superficial Thermal Insulation
        2.2.1 Surface Conductance β           16   (1)
        2.2.2 Computation of the Effect of         17   (2)
        Superficial Thermal Insulation
      2.3 Air Temperature                          19   (1)
        2.3.1 Annual Variation of Air              19   (1)
        Temperature
        2.3.2 Cold Wave                            19   (1)
      2.4 Temperature Increments due to Sunshine   20   (5)
        2.4.1 Sun Radiation on Horizontal          20   (2)
        Surface
        2.4.2 Temperature Increment of the Dam     22   (1)
        Surface due to Sunshine
        2.4.3 Influence of Sunshine on the         22   (3)
        Temperature of Horizontal Lift Surface
      2.5 Estimation of Water Temperature in       25   (3)
      Reservoir
      2.6 Numerical Computation of Water           28   (1)
      Temperature in Reservoir
      2.7 Thermal Properties of Concrete           29   (2)
      2.8 Heat of Hydration of Cement and the      31   (4)
      Adiabatic Temperature Rise of Concrete
        2.8.1 Heat of Hydration of Cement          31   (1)
        2.8.2 Adiabatic Temperature Rise of        32   (3)
        Concrete
      2.9 Temperature on the Surface of Dam        35   (1)
      2.10 The Autogenous Deformation of           36   (1)
      Concrete
      2.11 Semi-Mature Age of Concrete             36   (6)
        2.11.1 Method for Determining the          37   (1)
        Semi-Mature Age of Concrete
        2.11.2 Formulas for Computing the          38   (2)
        Semi-Mature Age of Concrete
        2.11.3 Meaning of Semi-Mature Age in       40   (1)
        Engineering
        2.11.4 Example of the Influence of         40   (1)
        Semi-Mature Age
        2.11.5 Measures for Adjusting the          41   (1)
        Semi-Mature Ages of Concrete
        2.11.6 Conclusions                         42   (1)
      2.12 Deformation of Concrete Caused by       42   (1)
      Change of Humidity
      2.13 Coefficients of Thermal Expansion of    43   (1)
      Concrete
      2.14 Solution of Temperature Field by        44   (5)
      Finite Difference Method
    3 Temperature Field in the Operation Period    49   (8)
    of a Massive Concrete Structure
      3.1 Depth of Influence of the Variation      49   (4)
      of Exterior Temperature in the Operation
      Period
        3.1.1 Depth of Influence of Variation      49   (1)
        of Water Temperature
        3.1.2 Depth of Influence of Variation      50   (3)
        of Air Temperature
      3.2 Variation of Concrete Temperature        53   (1)
      from the Beginning of Construction to the
      Period of Operation
      3.3 Steady Temperature Field of Concrete     54   (3)
      Dams
    4 Placing Temperature and Temperature Rise     57   (26)
    of Concrete Lift due to Hydration Heat of
    Cement
      4.1 Mixing Temperature of Concrete---T0      57   (1)
      4.2 The Forming Temperature of Concrete T1   58   (2)
      4.3 Placing Temperature of Concrete TP       60   (2)
      4.4 Theoretical Solution of Temperature      62   (5)
      Rise of Concrete Lift due to Hydration
      Heat of Cement
        4.4.1 Temperature Rise due to Hydration    62   (2)
        Heat in Concrete Lift with First Kind
        of Boundary Condition
        4.4.2 Temperature Rise due to Hydration    64   (2)
        Heat in Concrete Lift with Third Kind
        of Boundary Condition
        4.4.3 Temperature Rise due to Hydration    66   (1)
        Heat with Adiabatic Temperature Rise
        Expressed by Compound Exponentials
      4.5 Theoretical Solution of Temperature      67   (2)
      Field of Concrete Lift due to
      Simultaneous Action of Natural Cooling
      and Pipe Cooling
      4.6 Temperature Field in Concrete Lift       69   (3)
      Computed by Finite Difference Method
        4.6.1 Temperature Field in Concrete        69   (1)
        Lift due to Hydration Heat Computed by
        Finite Difference Method
        4.6.2 Temperature Field due to             70   (2)
        Hydration Heat in Concrete Lift with
        Cooling Pipe Computed by Finite
        Difference Method
      4.7 Practical Method for Computing           72   (11)
      Temperature Field in Construction Period
      of Concrete Dams
        4.7.1 Practical Method for Computing       74   (1)
        Temperature Field in Concrete Lift
        without Pipe Cooling
        4.7.2 Influence of the Placing             75   (2)
        Temperature Tp of the New Concrete
        4.7.3 Practical Method for Computing       77   (1)
        Temperature in Concrete Lift without
        Pipe Cooling
        4.7.4 Practical Method for Computing       77   (3)
        Temperature Field in Concrete Lift with
        Pipe Cooling
        4.7.5 Practical Treatment of Boundary      80   (3)
        Condition on the Top Surface
    5 Natural Cooling of Mass Concrete             83   (22)
      5.1 Cooling of Semi-Infinite Solid, Third    83   (2)
      Kind of Boundary Condition
      5.2 Cooling of a Slab with First Kind of     85   (4)
      Boundary Condition
      5.3 Cooling of a Slab with Third Kind of     89   (2)
      Boundary Condition
      5.4 Temperature in a Concrete Slab with      91   (7)
      Harmonic Surface Temperature
        5.4.1 Concrete Slab with Zero Initial      91   (3)
        Temperature and Harmonic Surface
        Temperature
        5.4.2 Concrete Slab, Initial               94   (4)
        Temperature T0, Harmonic Surface
        Temperature
      5.5 Temperature in a Slab with Arbitrary     98   (3)
      External Temperature
      5.6 Cooling of Mass Concrete in Two and      101  (4)
      Three Directions, Theorem of Product
    6 Stress---Strain Relation and Analysis of     105  (16)
    Viscoelastic Stress of Mass Concrete
      6.1 Stress---Strain Relation of Concrete     105  (6)
        6.1.1 Strain of Concrete due to            105  (2)
        Constant Stress
        6.1.2 Strain of Concrete due to            107  (1)
        Variable Stress
        6.1.3 Modulus of Elasticity and Creep      107  (3)
        of Concrete
        6.1.4 Lateral Strain and Poisson's         110  (1)
        Ratio of Concrete
      6.2 Stress Relaxation of Concrete            111  (4)
        6.2.1 Stress Relaxation of Concrete        111  (1)
        Subjected to Constant Strain
        6.2.2 Method for Computing the             112  (2)
        Relaxation Coefficient from Creep of
        Concrete
        6.2.3 Formulas for Relaxation              114  (1)
        Coefficient
      6.3 Modulus of Elasticity, Unit Creep,       115  (1)
      and Relaxation Coefficient of Concrete
      for Preliminary Analysis
      6.4 Two Theorems About the Influence of      115  (2)
      Creep on the Stresses and Deformations of
      Concrete Structures
      6.5 Classification of Massive Concrete       117  (1)
      Structures and Method of Analysis
      6.6 Method of Equivalent Modulus for         117  (4)
      Analyzing Stresses in Matured Concrete
      due to Harmonic Variation of Temperature
    7 Thermal Stresses in Fixed Slab or Free       121  (22)
    Slab
      7.1 Thermal Stresses in Fixed Slab           121  (5)
        7.1.1 Computation of the Temperature       121  (1)
        Field
        7.1.2 The Elastic Thermal Stress           121  (2)
        7.1.3 The Viscoelastic Thermal Stresses    123  (1)
        7.1.4 The Thermal Stresses in Fixed        123  (3)
        Slab Due to Hydration Heat of Cement
      7.2 Method for Computing Thermal Stresses    126  (3)
      in a Free Slab
        7.2.1 Elastic Thermal Stress in a Free     126  (2)
        Slab When the Modulus of Elasticity is
        Constant
        7.2.2 Viscoelastic Thermal Stress in a     128  (1)
        Free Slab Considering the Influence of
        Age
      7.3 Thermal Stresses in Free Concrete        129  (1)
      Slab due to Hydration Heat of Cement
      7.4 Thermal Stresses in Free Slabs with      129  (5)
      Periodically Varying Surface Temperature
        7.4.1 The Temperature Field                129  (5)
        7.4.2 The Viscoelastic Thermal Stresses    134  (1)
      7.5 Thermal Stress in Free Slab with         134  (4)
      Third Kind of Boundary Condition and
      Periodically Varying Air Temperature
      7.6 Thermal Stresses Due to Removing Forms   138  (5)
        7.6.1 Stresses Due to Removing Forms of    138  (1)
        Infinite Slab
        7.6.2 Stresses Due to Removing Forms of    139  (2)
        Semi-infinite Solid
        7.6.3 Computing Thermal Stress Due to      141  (2)
        Removing Forms by Finite Element Method
    8 Thermal Stresses in Concrete Beams on        143  (28)
    Elastic Foundation
      8.1 Self-Thermal Stress in a Beam            143  (2)
      8.2 Restraint Thermal Stress of Beam on      145  (11)
      Foundation of Semi-infinite Plane
        8.2.1 Nonhomogeneous Beam on Elastic       145  (7)
        Foundation
        8.2.2 Homogeneous Beam on Elastic          152  (4)
        Foundation
      8.3 Restraint Stresses of Beam on Old        156  (3)
      Concrete Block
      8.4 Approximate Analysis of Thermal          159  (1)
      Stresses in Thin Beam on Half-Plane
      Foundation
      8.5 Thermal Stress on the Lateral Surface    159  (2)
      of Beam on Elastic Foundation
      8.6 Thermal Stresses in Beam on Winkler      161  (8)
      Foundation
        8.6.1 Restraint Stress of Beam in Pure     161  (1)
        Tension
        8.6.2 Restraint Stress of Beam in Pure     162  (1)
        Bending
        8.6.3 Restraint Stresses of Beam in        163  (2)
        Bending and Tension
        8.6.4 Coefficients of Resistance of        165  (2)
        Foundation
        8.6.5 Approximate Method for Beam on       167  (1)
        Winkler Foundation
        8.6.6 Analysis of Effect of Restraint      167  (2)
        of Soil Foundation
      8.7 Thermal Stresses in Beams on Elastic     169  (2)
      Foundation When Modulus of Elasticity of
      Concrete Varying with Time
    9 Finite Element Method for Computing          171  (14)
    Temperature Field
      9.1 Variational Principle for the Problem    171  (3)
      of Heat Conduction
        9.1.1 Euler's Equation                     171  (1)
        9.1.2 Variational Principle of Problem     172  (2)
        of Heat Conduction
      9.2 Discretization of Continuous Body        174  (1)
      9.3 Fundamental Equations for Solving        174  (4)
      Unsteady Temperature Field by FEM
      9.4 Two-Dimensional Unsteady Temperature     178  (2)
      Field, Triangular Elements
      9.5 Isoparametric Elements                   180  (3)
        9.5.1 Two-Dimensional Isoparametric        180  (2)
        Elements
        9.5.2 Three-Dimensional Isoparametric      182  (1)
        Elements
      9.6 Computing Examples of Unsteady           183  (2)
      Temperature Field
    10 Finite Element Method for Computing the     185  (20)
    Viscoelastic Thermal Stresses of Massive
    Concrete Structures
      10.1 FEM for Computing Elastic Thermal       185  (7)
      Stresses
        10.1.1 Displacements of an Element         185  (2)
        10.1.2 Strains of an Element               187  (1)
        10.1.3 Stresses of an Element              188  (1)
        10.1.4 Nodal Forces and Stiffness          189  (1)
        Matrix of an Element
        10.1.5 Nodal Loads                         190  (1)
        10.1.6 Equilibrium Equation of Nodes       191  (1)
        and the Global Stiffness Matrix
        10.1.7 Collection of FEM Formulas          191  (1)
      10.2 Implicit Method for Solving             192  (7)
      Viscoelastic Stress---Strain Equation of
      Mass Concrete
        10.2.1 Computing Increment of Strain       192  (4)
        10.2.2 Relationship Between Stress         196  (1)
        Increment and Strain Increment for
        One-Directional Stress
        10.2.3 Relationship Between Stress         197  (2)
        Increment and Strain Increment for
        Complex Stress State
      10.3 Viscoelastic Thermal Stress Analysis    199  (3)
      of Concrete Structure
      10.4 Compound Element                        202  (1)
      10.5 Method of Different Time Increments     203  (2)
      in Different Regions
    11 Stresses due to Change of Air               205  (30)
    Temperature and Superficial Thermal
    Insulation
      11.1 Superficial Thermal Stress due to       205  (3)
      Linear Variation of Air Temperature
      During Cold Wave
      11.2 Superficial Thermal Insulation,         208  (8)
      Harmonic Variation of Air Temperature,
      One-Dimensional Heat Flow
        11.2.1 Superficial Thermal Insulation,     208  (3)
        Daily Variation of Air Temperature,
        One-Dimensional Heat Flow
        11.2.2 Superficial Thermal Insulation      211  (3)
        for Cold Wave, One-Dimensional Heat Flow
        11.2.3 Superficial Thermal Insulation,     214  (2)
        Temperature Drop in Winter,
        One-Dimensional Heat Row
      11.3 Superficial Thermal Insulation,         216  (4)
      Harmonic Variation of Air Temperature,
      Two-Dimensional Heat Flow
        11.3.1 Two-Dimensional Heat Flow,          216  (1)
        Thermal Insulation for Daily Variation
        of Air Temperature
        11.3.2 Two-Dimensional Heat Flow,          217  (3)
        Thermal Insulation for Cold Wave
        11.3.3 Two-Dimensional Heat Flow, the      220  (1)
        Superficial Thermal Insulation During
        Winter
      11.4 Thermal Stresses in Concrete Block      220  (6)
      During Winter and Supercritical Thermal
      Insulation
        11.4.1 Superficial Thermal Stresses        220  (3)
        During Winter
        11.4.2 Computation of Superficial          223  (2)
        Thermal Insulation
        11.4.3 Determining the Thickness of        225  (1)
        Superficial Thermal Insulation Plate
      11.5 Comprehensive Analysis of Effect of     226  (1)
      Superficial Thermal Insulation for
      Variation of Air Temperature
      11.6 The Necessity of Long Time Thermal      227  (3)
      Insulation for Important Concrete Surface
      11.7 Materials for Superficial Thermal       230  (5)
      Insulation
        11.7.1 Foamed Polystyrene Plate            230  (1)
        11.7.2 Foamed Polythene Wadded Quilt       230  (1)
        11.7.3 Polyurethane Foamed Coating         231  (1)
        11.7.4 Compound Permanent Insulation       231  (1)
        Plate
        11.7.5 Permanent Thermal Insulation and    231  (1)
        Anti-Seepage Plate
        11.7.6 Straw Bag                           232  (1)
        11.7.7 Sand Layer                          232  (1)
        11.7.8 Requirements of Thermal             233  (2)
        Insulation for Different Concrete
        Surfaces
    12 Thermal Stresses in Massive Concrete        235  (32)
    Blocks
      12.1 Thermal Stresses of Concrete Block      235  (4)
      on Elastic Foundation due to Uniform
      Cooling
        12.1.1 Thermal Stresses of Block on        235  (3)
        Horizontal Foundation
        12.1.2 Danger of Cracking of Thin Block    238  (1)
        with Long Time of Cooling
        12.1.3 Concrete Block on Inclined          238  (1)
        Foundation
      12.2 Influence Lines of Thermal Stress in    239  (4)
      Concrete Block
      12.3 Influence of Height of Cooling          243  (3)
      Region on Thermal Stresses
        12.3.1 Influence of Height of Cooling      243  (2)
        Region on Elastic Thermal Stresses
        12.3.2 Influence of Height of Cooling      245  (1)
        Region on the Viscoelastic Thermal
        Stresses
      12.4 Influence of Height of Cooling          246  (1)
      Region on Opening of Contraction Joints
      12.5 Two Kinds of Temperature Difference     247  (2)
      Between Upper and Lower Parts of Block
      12.6 Two Principles for Temperature          249  (10)
      Control and the Allowable Temperature
      Differences of Mass Concrete on Rock
      Foundation
        12.6.1 Stresses due to Stepwise            249  (3)
        Temperature Difference
        12.6.2 Positive Stepwise Temperature       252  (3)
        Difference and the First Principle
        About the Control of Temperature
        Difference of Concrete on Rock
        Foundation
        12.6.3 Negative Stepwise Temperature       255  (1)
        Difference and the Second Principle
        About the Control of Temperature
        Difference of Concrete on Rock
        Foundation
        12.6.4 Stresses due to Multi-Stepwise      255  (1)
        Temperature Difference
        12.6.5 Viscoelastic Thermal Stresses       256  (3)
        Simulating Process of Construction of
        Multilayer Concrete Block on Rock
        Foundation
      12.7 Approximate Formula for Thermal         259  (1)
      Stress in Concrete Block on Rock
      Foundation in Construction Period
      12.8 Influence of Length of Concrete         260  (3)
      Block on the Thermal Stress
        12.8.1 Influence of Length of Concrete     260  (2)
        Block on the Thermal Stress due to
        Temperature Difference Between the
        Upper and Lower Parts
        12.8.2 Influence of Joint Spacing on       262  (1)
        the Thermal Stress due to Annual
        Variation of Temperature
      12.9 Danger of Cracking due to               263  (2)
      Over-precooling of Concrete
      12.10 Thermal Stresses in Concrete Blocks    265  (1)
      Standing Side by Side
      12.11 Equivalent Temperature Rise due to     265  (2)
      Self-Weight of Concrete
    13 Thermal Stresses in Concrete Gravity Dams   267  (20)
      13.1 Thermal Stresses in Gravity Dams due    267  (3)
      to Restraint of Foundation
      13.2 Influence of Longitudinal Joints on     270  (1)
      Thermal Stress in Gravity Dam
      13.3 The Temperatures and Stresses in a      271  (1)
      Gravity Dam Without Longitudinal Joint
      13.4 Gravity Dam with Longitudinal Crack     271  (1)
      13.5 Deep Crack on the Upstream Face of      272  (1)
      Gravity Dam
      13.6 Opening of Longitudinal Joint of        273  (1)
      Gravity Dam in the Period of Operation
      13.7 Thermal Stresses of Gravity Dams in     274  (5)
      Severe Cold Region
        13.7.1 Peculiarity of Thermal Stresses     274  (1)
        of Gravity Dam in Severe Cold Region
        13.7.2 Horizontal Cracks and Upstream      275  (3)
        Face Cracks
        13.7.3 Measures for Preventing Cracking    278  (1)
        of Gravity Dam in Severe Cold Region
      13.8 Thermal Stresses due to Heightening     279  (5)
      of Gravity Dam
      13.9 Technical Measures to Reduce the        284  (3)
      Thermal Stress due to Heightening of
      Gravity Dam
    14 Thermal Stresses in Concrete Arch Dams      287  (26)
      14.1 Introduction                            287  (2)
        14.1.1 Self-Thermal Stresses of Arch Dam   287  (1)
        14.1.2 Three Characteristic Temperature    288  (1)
        Fields in Arch Dam
        14.1.3 Temperature Loading on Arch Dams    289  (1)
      14.2 Temperature Loading on Arch Dam for     289  (3)
      Constant Water Level
        14.2.1 Formulas for Tm2 and Td2            290  (1)
        14.2.2 Physical Meaning of the             291  (1)
        Equivalent Linear Temperature
      14.3 Temperature Loading on Arch Dam for     292  (5)
      Variable Water Level
        14.3.1 Computation of Surface              292  (2)
        Temperature of Dam for Variable Water
        Level
        14.3.2 Temperature Loading on Arch Dam     294  (3)
        for Variable Water Level
      14.4 Temperature Loadings on Arch Dams in    297  (8)
      Cold Region with Superficial Thermal
      Insulation Layer
        14.4.1 Tm1 and Td1 for the Annual Mean     297  (3)
        Temperature Field T1(x)
        14.4.2 Exact Solution of Tm2 and Td2       300  (4)
        for the Yearly Varying Temperature
        Field T2(x,T)
        14.4.3 Approximate Solution of Tm2 and     304  (1)
        Td2 for the Yearly Varying Temperature
        Field T2(x,T)
      14.5 Measures for Reducing Temperature       305  (1)
      Loadings of Arch Dam
        14.5.1 Optimizing Grouting Temperature     306  (1)
        14.5.2 Superficial Thermal Insulation      306  (1)
      14.6 Temperature Control of RCC Arch Dams    306  (2)
        14.6.1 RCC Arch Dams without Transverse    306  (1)
        Joint
        14.6.2 RCC Arch Dam with Transverse        307  (1)
        Joints
      14.7 Observed Thermal Stresses and           308  (5)
      Deformations of Arch Dams
    15 Thermal Stresses in Docks, Locks, and       313  (20)
    Sluices
      15.1 Self-Thermal Stresses in Walls of       313  (1)
      Docks and Piers of Sluices
      15.2 Restraint Stress in the Wall of Dock    314  (7)
        15.2.1 General Theory for the Restraint    314  (3)
        Stress in the Wall of Dock
        15.2.2 Computation for Wide Bottom Plate   317  (3)
        15.2.3 Computation for Bottom Plate        320  (1)
        with Moderate Width
      15.3 Restraint Stress in the Piers of        321  (2)
      Sluices
      15.4 Restraint Stress in the Wall of Dock    323  (2)
      or the Pier of Sluice on Narrow Bottom
      Plate
      15.5 Simplified Computing Method             325  (4)
        15.5.1 T Beam                              325  (2)
        15.5.2 Simplified Computation of           327  (1)
        Thermal Stresses in Dock
        15.5.3 Simplified Method for Thermal       328  (1)
        Stresses in Sluices
        15.5.4 Simplified Method for E(y,          329  (1)
        τ) Varying with Age τ
      15.6 Thermal Stresses in a Sluice by FEM     329  (4)
        15.6.1 Thermal Stress due to Hydration     329  (4)
        Heat of Cement in Construction Period
    16 Simulation Analysis, Dynamic Temperature    333  (8)
    Control, Numerical Monitoring, and Model
    Test of Thermal Stresses in Massive
    Concrete Structures
      16.1 Full Course Simulation Analysis of      333  (1)
      Concrete Dams
      16.2 Dynamic Temperature Control and         334  (1)
      Decision Support System of Concrete Dam
      16.3 Numerical Monitoring of Concrete Dams   335  (2)
        16.3.1 The Drawbacks of Instrumental       336  (1)
        Monitoring
        16.3.2 Numerical Monitoring                336  (1)
        16.3.3 The Important Functions of          336  (1)
        Numerical Monitoring
      16.4 Model Test of Temperature and Stress    337  (4)
      Fields of Massive Concrete Structures
    17 Pipe Cooling of Mass Concrete               341  (60)
      17.1 Introduction                            341  (1)
      17.2 Plane Temperature Field of Pipe         342  (6)
      Cooling in Late Stage
        17.2.1 Plane Temperature Field of          342  (4)
        Concrete Cooled by Nonmetal Pipe in
        Late Stage
        17.2.2 Plane Temperature Field of          346  (2)
        Concrete Cooled by Metal Pipe in Late
        Stage
      17.3 Spatial Temperature Field of Pipe       348  (10)
      Cooling in Late Stage
        17.3.1 Method of Solution of the           348  (4)
        Spatial Problem of Pipe Cooling
        17.3.2 Spatial Cooling of Concrete by      352  (4)
        Metal Pipe in Late Stage
        17.3.3 Spatial Cooling of Concrete by      356  (2)
        Nonmetal Pipe in Late Stage
      17.4 Temperature Field of Pipe Cooling in    358  (4)
      Early Stage
        17.4.1 Plane Problem of Pipe Cooling of    358  (2)
        Early Stage
        17.4.2 Spatial Problem of Pipe Cooling     360  (2)
        of Late Stage
      17.5 Practical Formulas for Pipe Cooling     362  (5)
      of Mass Concrete
        17.5.1 Mean Temperature of Concrete        362  (2)
        Cylinder with Length L
        17.5.2 Mean Temperature of the Cross       364  (1)
        Section of Concrete Cylinder
        17.5.3 Time of Cooling                     365  (1)
        17.5.4 Formula for Water Temperature       366  (1)
      17.6 Equivalent Equation of Heat             367  (4)
      Conduction Considering Effect of Pipe
      Cooling
        17.6.1 Temperature Variation of            367  (3)
        Concrete with Insulated Surface and
        Cooling Pipe
        17.6.2 Equivalent Equation of Heat         370  (1)
        Conduction Considering the Effect of
        Pipe Cooling
      17.7 Theoretical Solution of the             371  (5)
      Elastocreeping Stresses Due to Pipe
      Cooling and Self-Restraint
        17.7.1 The Elastic Thermal Stress Due      371  (2)
        to Self-Restraint
        17.7.2 The Elastocreeping Thermal          373  (1)
        Stress Due to Self-Restraint
        17.7.3 A Practical Formula for the         374  (1)
        Elastocreeping Thermal Stress Due to
        Self-Restraint
        17.7.4 Reducing Thermal Stress by          374  (1)
        Multistage Cooling with Small
        Temperature Differences---Theoretical
        Solution
        17.7.5 The Elastocreeping Self-Stress      375  (1)
        Due to Pipe Cooling and Hydration Heat
        of Cement
      17.8 Numerical Analysis of Elastocreeping    376  (4)
      Self-Thermal Stress of Pipe Cooling
        17.8.1 Computing Model                     376  (1)
        17.8.2 Elastocreeping Stresses in 60       377  (1)
        Days Early Pipe Cooling
        17.8.3 Elastocreeping Stresses in 20       377  (1)
        Days Early Pipe Cooling
        17.8.4 Elastocreeping Stresses in Late     377  (2)
        Pipe Cooling
        17.8.5 New Method of                       379  (1)
        Cooling---Multistep Early and Slow
        Cooling with Small Temperature
        Differences---Numerical Analysis
      17.9 The FEM for Computing Temperatures      380  (4)
      and Stresses in Pipe Cooled Concrete
        17.9.1 Pipe Cooling Temperature Field      380  (2)
        Solved Directly by FEM
        17.9.2 Equivalent FEM for Computing the    382  (2)
        Temperatures and Stresses in Mass
        Concrete Block with Cooling Pipe
        17.9.3 Comparison Between the Direct       384  (1)
        Method and the Equivalent Method for
        Pipe Cooling
      17.10 Three Principles for Pipe Cooling      384  (2)
      17.11 Research on the Pattern of Early       386  (1)
      Pipe Cooling
      17.12 Research on the Pattern of the         387  (2)
      Medium and the Late Cooling
        17.12.1 The Influence of Temperature       387  (2)
        Gradient on the Thermal Stress
        17.12.2 The Influence of Pipe Spacing      389  (1)
        on the Thermal Stress
        17.12.3 The Influence of the Number of     389  (1)
        Stages of Pipe Cooling
      17.13 Strengthen Cooling by Close            389  (6)
      Polythene Pipe
        17.13.1 Effect of Cooling by Close Pipe    389  (2)
        17.13.2 Influence of Cooling of Pipe       391  (3)
        with Small Spacing on the Thermal Stress
        17.13.3 The Principle for Control of       394  (1)
        Pipe Spacing and Temperature Difference
        T0 --- Tw
      17.14 Advantages and Disadvantages of        395  (3)
      Pipe Cooling
      17.15 Superficial Thermal Insulation of      398  (3)
      Mass Concrete During Pipe Cooling in Hot
      Seasons
    18 Precooling and Surface Cooling of Mass      401  (8)
    Concrete
      18.1 Introduction                            401  (1)
      18.2 Getting Aggregates from Underground     402  (1)
      Gallery
      18.3 Mixing with Cooled Water and Ice        403  (1)
      18.4 Precooling of Aggregate                 404  (2)
        18.4.1 Precooling of Aggregate by Water    404  (1)
        Cooling
        18.4.2 Precooling of Aggregate by Air      405  (1)
        Cooling
        18.4.3 Precooling of Aggregate by Mixed    405  (1)
        Type of Water Spraying and Air Cooling
        18.4.4 Precooling of Aggregate by          406  (1)
        Secondary Air Cooling
      18.5 Cooling by Spraying Fog or Flowing      406  (3)
      Water over Top of the Concrete Block
        18.5.1 Spraying Fog over Top of the        406  (2)
        Concrete Block
        18.5.2 Cooling by Flowing Water over       408  (1)
        Top of the Concrete Block
    19 Construction of Dam by MgO Concrete         409  (16)
      19.1 MgO Concrete                            409  (1)
      19.2 Six Peculiarities of MgO Concrete       410  (5)
      Dams
        19.2.1 Difference Between Indoor and       410  (2)
        Outdoor Expansive Deformation
        19.2.2 Time Difference                     412  (1)
        19.2.3 Regional Difference                 413  (1)
        19.2.4 Dam Type Difference                 414  (1)
        19.2.5 Two Kinds of Temperature            414  (1)
        Difference
        19.2.6 Dilatation Source Difference        414  (1)
      19.3 The Calculation Model of the            415  (1)
      Expansive Deformation of MgO Concrete
        19.3.1 The Calculation Model of the        415  (1)
        Expansive Deformation for Test Indoors
        19.3.2 The Calculation of the Expansive    415  (1)
        Deformation of MgO Concrete of Dam Body
        Outdoors
        19.3.3 The Incremental Calculation of      416  (1)
        the Autogenous Volume Deformation
      19.4 The Application of MgO Concrete in      416  (3)
      Gravity Dams
        19.4.1 Conventional Concrete Gravity       416  (3)
        Dams
      19.5 The Application of MgO Concrete in      419  (6)
      Arch Dams
        19.5.1 Arch Dams with Contraction Joints   419  (1)
        19.5.2 Arch Dams without Contraction       420  (3)
        Joints, Time Difference
        19.5.3 Example of Application of MgO       423  (2)
        Concrete, Sanjianghe MgO Concrete Arch
        Dam
    20 Construction of Mass Concrete in Winter     425  (6)
      20.1 Problems and Design Principles of       425  (1)
      Construction of Mass Concrete in Winter
        20.1.1 Problems of Construction of Mass    425  (1)
        Concrete in Winter
        20.1.2 Design Principles of                426  (1)
        Construction of Mass Concrete in Winter
      20.2 Technical Measures of Construction      426  (2)
      of Mass Concrete in Winter
      20.3 Calculation of Thermal Insulation of    428  (3)
      Mass Concrete Construction in Winter
    21 Temperature Control of Concrete Dam in      431  (8)
    Cold Region
      21.1 Climate Features of the Cold Region     431  (1)
      21.2 Difficulties of Temperature Control     432  (1)
      of Concrete Dam in Cold Region
      21.3 Temperature Control of Concrete Dam     433  (6)
      in Cold Region
    22 Allowable Temperature Difference,           439  (30)
    Cooling Capacity, Inspection and Treatment
    of Cracks, and Administration of
    Temperature Control
      22.1 Computational Formula for Concrete      439  (2)
      Crack Resistance
      22.2 Laboratory Test of Crack Resistance     441  (1)
      of Concrete
      22.3 The Difference of Tensile Properties    441  (2)
      Between Prototype Concrete and Laboratory
      Testing Sample
        22.3.1 Coefficient b1 for Size and         441  (1)
        Screening Effect
        22.3.2 Time Effect Coefficient b2          442  (1)
      22.4 Reasonable Value for the Safety         443  (4)
      Factor of Crack Resistance
        22.4.1 Theoretical Safety Factor of        443  (1)
        Crack Resistance
        22.4.2 Practical Safety Factor of          443  (2)
        Concrete Crack Resistance
        22.4.3 Safety Factors for Crack            445  (2)
        Resistance in Preliminary Design
      22.5 Calculation of Allowable Temperature    447  (3)
      Difference and Ability of Superficial
      Thermal Insulation of Mass Concrete
        22.5.1 General Formula for Allowable       447  (1)
        Temperature Difference and Superficial
        Thermal Insulation
        22.5.2 Approximate Calculation of          447  (3)
        Allowable Temperature Difference and
        Insulation Ability
      22.6 The Allowable Temperature Difference    450  (3)
      Adopted by Practical Concrete Dam Design
      Specifications
        22.6.1 Regulations of Allowable            450  (1)
        Temperature Difference in Chinese
        Concrete Dam Design Specifications
        22.6.2 The Requirement of Temperature      451  (1)
        Control in "Design Guideline of Roller
        Compacted Concrete Dam" of China
        22.6.3 Temperature Control Regulation      452  (1)
        of Concrete Dam by U.S. Bureau of
        Reclamation and U.S. Army Corps of
        Engineering
        22.6.4 Temperature Control Requirements    453  (1)
        of Concrete Dam of Russia
      22.7 Practical Examples for Temperature      453  (7)
      Control of Concrete Dams
        22.7.1 Laxiwa Arch Dam                     453  (2)
        22.7.2 Toktogulskaya Gravity Dam           455  (4)
        22.7.3 Dworshak Gravity Dam                459  (1)
      22.8 Cooling Capacity                        460  (3)
        22.8.1 Calculation for the Total           460  (3)
        Cooling Capacity
        22.8.2 Cooling Load for Different Cases    463  (1)
      22.9 Inspection and Classification of        463  (1)
      Concrete Cracks
        22.9.1 Inspection of Concrete Cracks       463  (1)
        22.9.2 Classification of Cracks in Mass    464  (1)
        Concrete
      22.10 Treatment of Concrete Cracks           464  (5)
        22.10.1 Harm of Cracks                     464  (1)
        22.10.2 Environmental Condition of         465  (1)
        Cracks
        22.10.3 Principle of Crack Treatment       465  (1)
        22.10.4 Method of Crack Treatment          466  (3)
    23 Key Principles for Temperature Control      469  (10)
    of Mass Concrete
      23.1 Selection of the Form of Structure      469  (1)
      23.2 Optimization of Concrete Material       470  (1)
      23.3 Calculation of Crack Resistance of      470  (1)
      Concrete
      23.4 Control of Temperature Difference of    471  (1)
      Mass Concrete
        23.4.1 Temperature Difference Above Dam    471  (1)
        Foundation and Temperature Difference
        Between Upper and Lower Parts of Dam
        Block
        23.4.2 Surface---Interior Temperature      472  (1)
        Difference
        23.4.3 Maximum Temperature of Concrete     472  (1)
      23.5 Analysis of Thermal Stress of Mass      472  (2)
      Concrete
        23.5.1 Estimation of Thermal Stress        472  (1)
        23.5.2 Primary Calculation of the          473  (1)
        Temperature Stress
        23.5.3 Detailed Calculation of Thermal     473  (1)
        Stress
        23.5.4 Whole Process Simulation            474  (1)
        Calculation
      23.6 Dividing the Dam into Blocks            474  (1)
      23.7 Temperature Control of Gravity Dam      475  (1)
      23.8 Temperature Control of Arch Dam         476  (1)
      23.9 Control of Placing Temperature of       476  (1)
      Mass Concrete
      23.10 Pipe Cooling of Mass Concrete          477  (1)
      23.11 Surface Thermal Insulation             477  (1)
      23.12 Winter Construction                    478  (1)
      23.13 Conclusion                             478  (1)
Appendix: Unit Conversion                          479  (2)
References                                         481  (6)
Index                                              487

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上