[内容简介]
            回顾混凝土与建筑发展的历程,作者关注并提出了如下的焦点问题及其演变方向:安全性→耐久性→服役性/功 能性→可持续性本书全面分析了世界混凝土可持续发展所面临挑战的复杂性和应对方案的多样性。第一章主要从混凝土对社会与经济发展的作用和影响的角度对混凝 土可持续性问题进行了探讨;第二章重点介绍国际范围内混凝土可持续发展所涉及的环境评价工具和方法论,并分析了不同的关注焦点、评价方法和时限对混凝土可 持续性的影响;第三、四章着重分析了水泥混凝土领域所面临的排放、捕集与吸收和循环的挑战;第五章分析了其他方面的环境挑战;第六、七章给出了综合评述及 未来发展趋势的分析;最后列出了500多条参考文献,以供有兴趣的读者深度查阅。本书主要探讨在全球范围内提升混凝土可持续性的系统思考方法和技术途径, 以此鼓励和帮助有兴趣的读者(包括政策制定者,建筑与材料领域的专家、工程师,高等学校的教授、学生,以及致力于环境与可持续发展领域的人员等)针对混凝 土可持续发展所面临的问题,用系统方法论对其资源可获取性、技术与经济可行性、环境相容性以及社会责任等要素进行全方位的思考和行动。 
        [目录]
        Foreword  by V. Mohan Malhotra	xi
        Foreword  by Wei Sun		xiii
        Preface			xv
        Acknowledgements		xvii
        The authors			xix
        1	Introduction			1
        1.1	The economical impact of concrete	2
        1.2	Concrete and social progress	7
        2	Environmental issues		53
        2.1	Global/regional/local aspects	53
        2.2	Rating systems		53
        2.3	Evaluation systems/tools	58
        2.4	ISO methodology/standards	67
        2.5	Variation in focus		73
        2.5.1	Different sectors of the concrete industry tend to focus on different aspects	74
        2.5.2	Focus: Lifetime expectancy perspectives	75
        2.5.3	Focus: 2020	75
        2.5.4	Focus: 2050	75
        2.6	Traditions/testing	76
        2.6.1	Example 1	77
        2.6.2	Example 2	78
        2.6.3	Example 3	79
        3	Emissions and absorptions	81
        3.1	General			81
        3.2	CO2 emission from cement and concrete production	85
        3.3	Emission of other greenhouse gases	89
        3.4	Absorption/carbonation	92
        3.5	The tools and possible actions	103
        3.5.1	Increased utilisation of supplementary cementing materials	103
        3.5.2	Fly ash		107
        3.5.3	Blast furnace slag	115
        3.5.4	Silica fume	118
        3.5.5	Metakaolin	120
        3.5.6	Rice husk ash (RHA)	121
        3.5.7	Natural pozzolans	124
        3.5.8	Other ashes and slags	130
        3.5.8.1	Sewage sludge incineration ash (SSIA)	131
        3.5.8.2	Ferroalloy slag	131
        3.5.8.3	Barium and strontium slag	132
        3.5.8.4	Other types of slag	132
        3.5.8.5	Ashes from co-combustion	133
        3.5.8.6	Wood ash	134
        3.5.8.7	Fluidised bed ash	134
        3.5.9	Limestone powder	135
        3.5.10	Other supplementary cementitious materials	138
        3.5.11	Improvements and more efficient cement 
        production	141
        3.5.12	New/other types of cement/binders	152
        3.5.12.1	High-belite cement(HBC)	163
        3.5.12.2	Sulphur concrete	164
        3.5.13	Increased carbonation	165
        3.5.14	Better energy efficiency in buildings	165
        3.5.15	Improved mixture design/packing technology/water reduction	166
        3.5.16	Increased building flexibility, and more sustainable design and recycling practice	169
        3.5.17	Miscellaneous	172
        3.5.17.1	Production restrictions	172
        3.5.17.2	The testing regime	172
        3.5.18	Carbon capture and storage (CCS)	172
        3.5.18.1	Capture	173
        3.5.18.2	Storage	174
        3.6	Variation in focus		176
        3.6.1	Focus 1: Lifetime expectancy perspective	176
        3.6.2	Focus 2: 2020	177
        3.6.3	Focus 3: 2050	178
        3.7	Some conclusions		180
        4	Recycling			181
        4.1	Recycling of concrete	181
        4.1.1	Norway		186
        4.1.2	Japan		187
        4.1.3	The Netherlands	188
        4.1.4	Hong Kong, China	189
        4.1.5	General		189
        4.1.5.1	Processing technology	192
        4.1.5.2	Fines	194
        4.2	Recycling of other materials as aggregate in concrete	200
        4.2.1	Used rubber tires in concrete	200
        4.2.2	Aggregate manufactured from fines	204
        4.2.3	Processed sugar cane ash	204
        4.2.4	Recycled plastic, e.g., bottles	204
        4.2.5	Hempcrete and other “straw concretes”	206
        4.2.6	Papercrete	207
        4.2.7	Oil palm shell lightweight concrete	208
        4.2.8	Glass concrete	208
        4.2.9	Paper mill ash for self-compacting concrete (SCC)	211
        4.2.10	Slag		211
        4.2.11	Recycling of “doubtful” waste as aggregate	211
        4.2.12	Iron mine mill waste (mill tailings)	213
        4.2.13	Bauxite residue/red sand	213
        4.2.14	Copper slag	214
        4.2.15	Other materials	214
        4.2.16	Waste latex paint	215
        4.2.17	Fillers for self-compacting concrete	216
        4.3	Recycling of other materials as reinforcement in concrete	219
        4.4	Recycling of other materials as binders in concrete	220
        4.4.1	Waste glass	220
        4.4.2	Recycling of fluid catalytic cracking catalysts	220
        4.5	Recycling of cement kiln dust (CKD)	221
        5	The environmental challenges—other items	225
        5.1	Aggregate shortage	225
        5.2	Durability/longevity	231
        5.3	Energy savings		241
        5.4	Health			248
        5.4.1	Skin burn		250
        5.4.2	The chromium challenge	250
        5.4.3	Compaction by vibration	252
        5.4.4	Dust		252
        5.4.5	Emission and moisture in concrete	253
        5.4.6	Form oil		255
        5.4.7	NOx-absorbing concrete	255
        5.4.7.1	General	255
        5.4.7.2	Principle of reaction	255
        5.4.7.3	The catalyst	255
        5.4.7.4	The effects	256
        5.4.7.5	Concrete—product areas	257
        5.4.7.6	Other experiences	258
        5.4.7.7	Climate change and health	259
        5.5	Leakage		260
        5.5.1	General		260
        5.5.2	Leakage of pollutants from cement and concrete	261
        5.5.2.1	Leakage from the cement manufacture process	262
        5.5.2.2	Leakage from concrete	263
        5.5.3	Concrete to prevent leakage	269
        5.6	Noise pollution		271
        5.6.1	Noise reduction in concrete production	273
        5.6.2	Noise reduction from traffic	273
        5.6.3	Reduction of noise pollution in buildings	274
        5.6.4	Step sound reduction in stairways	275
        5.7	Radiation		280
        5.7.1	Effects of radioactive radiation on the human body	281
        5.7.1.1	Alpha particles (or alpha radiation)	281
        5.7.1.2	Beta particles	282
        5.7.1.3	X-rays and gamma rays	282
        5.7.2	Natural radioactivity in building materials	285
        5.7.3	Radiation from cement and concrete	289
        5.7.4	Radioactivity risk reduction with cement and concrete	292
        5.7.4.1	Concrete as a shield of radiation	292
        5.7.4.2	Encapsulation of radioactive materials with cement and concrete	296
        5.7.5	Clearance of radioactive concrete	299
        5.8	Safety			300
        5.8.1	Concrete as a safety tool	303
        5.8.2	Concrete safety levels in a climate change perspective	305
        5.9	Water			307
        5.9.1	Water shortage	310
        5.9.2	Managing the increased precipitation	314
        5.9.2.1	Pervious concrete	316
        5.9.2.2	Pervious ground with concrete paver systems	319
        5.9.2.3	Delaying systems	319
        5.9.3	Reuse of wash water from concrete production	320
        5.9.4	Escape of wash water from concrete production to freshwater and the sea	328
        5.9.5	Food supply—artificial fish reefs (AFRs)	331
        5.9.5.1	History	332
        5.9.5.2	Where have AFRs been used?	332
        5.9.5.3	Motivations for establishing AFRs	333
        5.9.5.4	Design factors	334
        5.9.5.5	Some examples	337
        5.9.5.6	Restoration of coral reefs	337
        5.9.5.7	The Tjuvholmen project	338
        5.9.6	Erosion protection	342
        5.10	Wastes			342
        6	New possibilities and challenges	357
        6.1	Small hydroelectric power stations	358
        6.2	Windmills		359
        6.3	New raw materials/low energy and low CO2 cements	365
        6.3.1	Principle for clinker composition design	366
        6.3.2	Lower energy and low-emission clinker preparation	368
        6.3.3	Performance evaluation of HBC	368
        6.3.3.1	Strength	369
        6.3.3.2	Heat evolution characteristics	370
        6.3.3.3	Chemical corrosion resistance	371
        6.3.3.4	Drying shrinkage	371
        6.3.3.5	Existing standards for HBC	372
        6.3.3.6	Simplified explanation for the excellent performance of HBC	372
        6.3.4	Latest results on belite-calcium Sulfoaluminate (BCSA) cement	372
        6.4	New concrete products and components	373
        7	The future			375
        References			379
        Index			413