新书报道
当前位置: 首页 >> 生物医学农业环境科学 >> 正文
Modern Computational Approaches to Traditional Chinese Medicine
发布日期:2015-12-31  浏览

Modern Computational Approaches to Traditional Chinese Medicine

[Book Description]

Recognized as an essential component of Chinese culture, Traditional Chinese Medicine (TCM) is both an ancient medical system and one still used widely in China today. TCM's independently evolved knowledge system is expressed mainly in the Chinese language and the information is frequently only available through ancient classics and confidential family records, making it difficult to utilize. The major concern in TCM is how to consolidate and integrate the data, enabling efficient retrieval and discovery of novel knowledge from the dispersed data. Computational approaches such as data mining, semantic reasoning and computational intelligence have emerged as innovative approaches for the reservation and utilization of this knowledge system. Typically, this requires an inter-disciplinary approach involving Chinese culture, computer science, modern healthcare and life sciences. This book examines the computerization of TCM information and knowledge to provide intelligent resources and supporting evidences for clinical decision-making, drug discovery, and education. Recent research results from the Traditional Chinese Medicine Informatics Group of Zhejiang University are presented, gathering in one resource systematic approaches for massive data processing in TCM. These include the utilization of modern Semantic Web and data mining methods for more advanced data integration, data analysis and integrative knowledge discovery. This book will appeal to medical professionals, life sciences students, computer scientists, and those interested in integrative, complementary, and alternative medicine. This interdisciplinary book bringing together Traditional Chinese Medicine and computer scientists. It introduces novel network technologies to Traditional Chinese Medicine informatics. It provides theory and practical examples and case studies of new techniques.

[Table of Contents]
Preface                                            xi
    1 Overview of Knowledge Discovery in           1  (26)
    Traditional Chinese Medicine
      1.1 Introduction                             1  (2)
      1.2 The State of the Art of TCM Data         3  (3)
      Resources
        1.2.1 Traditional Chinese Medical          4  (1)
        Literature Analysis and Retrieval System
        1.2.2 Figures and Photographs of           4  (1)
        Traditional Chinese Drug Database
        1.2.3 Database of Chinese Medical          5  (1)
        Formulae
        1.2.4 Database of Chemical Composition     5  (1)
        from Chinese Herbal Medicine
        1.2.5 Clinical Medicine Database           5  (1)
        1.2.6 TCM Electronic Medical Record        6  (1)
        Database
      1.3 Review of KDTCM Research                 6  (13)
        1.3.1 Knowledge Discovery for CMF          6  (5)
        Research
        1.3.2 Knowledge Discovery for CHM          11 (3)
        Research
        1.3.3 Knowledge Discovery for Research     14 (2)
        of TCM Syndrome
        1.3.4 Knowledge Discovery for TCM          16 (3)
        Clinical Diagnosis
      1.4 Discussions and Future Directions        19 (3)
      1.5 Conclusions                              22 (5)
    2 Integrative Mining of Traditional Chinese    27 (26)
    Medicine Literature and MEDLINE for
    Functional Gene Networks
      2.1 Introduction                             27 (2)
      2.2 Connecting TCM Syndrome to Modern        29 (1)
      Biomedicine by Integrative Literature
      Mining
      2.3 Related Work on Biomedical Literature    30 (3)
      Mining
      2.4 Name Entity and Relation Extraction      33 (3)
      Methods
        2.4.1 Bubble-Bootstrapping Method          33 (2)
        2.4.2 Relation Weight Computing            35 (1)
      2.5 MeDisco/3S System                        36 (2)
      2.6 Results                                  38 (9)
        2.6.1 Functional Gene Networks             43 (2)
        2.6.2 Functional Analysis of Genes from    45 (2)
        Syndrome Perspective
      2.7 Conclusions                              47 (6)
    3 MapReduce-Based Network Motif Detection      53 (14)
    for Traditional Chinese Medicine
      3.1 Introduction                             53 (1)
      3.2 Related Work                             54 (1)
      3.3 MapReduce-Based Pattern Finding          55 (6)
        3.3.1 MRPF Framework                       55 (2)
        3.3.2 Neighbor Vertices Finding and        57 (1)
        Pattern Initialization
        3.3.3 Pattern Extension                    58 (1)
        3.3.4 Frequency Computing                  59 (2)
      3.4 Application to Prescription              61 (3)
      Compatibility Structure Detection
        3.4.1 Motifs Detection Results             61 (1)
        3.4.2 Performance Analysis                 62 (2)
      3.5 Conclusions                              64 (3)
    4 Data Quality for Knowledge Discovery in      67 (8)
    Traditional Chinese Medicine
      4.1 Introduction                             67 (2)
      4.2 Key Data Quality Dimensions in TCM       69 (1)
        4.2.1 Representation Granularity           69 (1)
        4.2.2 Representation Consistency           69 (1)
        4.2.3 Completeness                         70 (1)
      4.3 Methods to Handle Data Quality           70 (3)
      Problems
        4.3.1 Handling Representation              70 (1)
        Granularity
        4.3.2 Handling Representation              71 (1)
        Consistency
        4.3.3 Handling Completeness                72 (1)
      4.4 Conclusions                              73 (2)
    5 Service-Oriented Data Mining in              75 (12)
    Traditional Chinese Medicine
      5.1 Introduction                             75 (1)
      5.2 Related Work                             76 (2)
        5.2.1 Traditional Data Mining Software     76 (1)
        5.2.2 Data Mining Systems for Specific     77 (1)
        Field
        5.2.3 Distributed Data Mining Platform     77 (1)
        5.2.4 The Spora Demo                       78 (1)
      5.3 System Architecture and Data Mining      78 (4)
      Service
        5.3.1 Hierarchical Structure               78 (2)
        5.3.2 Service Operator Organization        80 (1)
        5.3.3 User Interaction and Visualization   81 (1)
      5.4 Case Studies                             82 (3)
        5.4.1 Case 1: Domain-Driven KDD Support    82 (2)
        for TCM
        5.4.2 Case 2: Data Mining Based on         84 (1)
        Distributed Resources
        5.4.3 Case 3: Data Mining Process as a     84 (1)
        Service
      5.5 Conclusions                              85 (2)
    6 Semantic E-Science for Traditional           87 (22)
    Chinese Medicine
      6.1 Introduction                             87 (2)
      6.2 Results                                  89 (13)
        6.2.1 System Architecture                  89 (2)
        6.2.2 TCM Domain Ontology                  91 (2)
        6.2.3 DartMapping                          93 (1)
        6.2.4 DartSearch                           94 (1)
        6.2.5 DartQuery                            95 (3)
        6.2.6 TCM Service Coordination             98 (1)
        6.2.7 Knowledge Discovery Service          98 (1)
        6.2.8 DartFlow                             99 (1)
        6.2.9 TCM Collaborative Research           100(1)
        Scenario
        6.2.10 Task-Driven Information             100(1)
        Allocation
        6.2.11 Collaborative Information Sharing   101(1)
        6.2.12 Scientific Service Coordination     102(1)
      6.3 Discussion                               102(1)
      6.4 Conclusions                              103(1)
      6.5 Methods                                  103(6)
        6.5.1 TCM Ontology Engineering             103(1)
        6.5.2 View-Based Semantic Mapping          104(1)
        6.5.3 Semantic-Based Service Matchmaking   105(4)
    7 Ontology Development for Unified             109(20)
    Traditional Chinese Medical Language System
      7.1 Introduction                             109(1)
      7.2 The Principle and Knowledge System of    110(1)
      TCM
      7.3 What Is an Ontology?                     111(1)
      7.4 Protege 2000: The Tool We Use            111(1)
      7.5 Ontology Design and Development for      112(5)
      UTCMLS
        7.5.1 Methodology of Ontology              113(2)
        Development
        7.5.2 Knowledge Acquisition                115(2)
        7.5.3 Integrating and Merging of TCM       117(1)
        Ontology
      7.6 Results                                  117(7)
        7.6.1 The Core Top-Level Categories        120(1)
        7.6.2 Subontologies and the                120(1)
        Hierarchical Structure
        7.6.3 Concept Structure                    120(1)
        7.6.4 Semantic Structure                   121(1)
        7.6.5 Semantic Types and Semantic          121(3)
        Relationships
      7.7 Conclusions                              124(5)
    8 Causal Knowledge Modeling for Traditional    129(6)
    Chinese Medicine Using OWL 2
      8.1 Introduction                             129(1)
      8.2 Causal TCM Knowledge Modeling            130(1)
      8.3 Causal Reasoning                         130(1)
      8.4 Evaluation                               131(1)
      8.5 Conclusions                              132(3)
    9 Dynamic Subontology Evolution for            135(36)
    Traditional Chinese Medicine Web Ontology
      9.1 Introduction                             135(1)
      9.2 TCM Domain Ontology                      136(4)
        9.2.1 Ontology Framework                   136(3)
        9.2.2 User Interface                       139(1)
      9.3 Subontology Model                        140(6)
        9.3.1 Preliminaries                        142(1)
        9.3.2 Subontology Definition               143(1)
        9.3.3 Subontology Operators                144(2)
      9.4 Ontology Cache for Knowledge Reuse       146(6)
        9.4.1 Reusing Subontologies as Ontology    146(1)
        Cache
        9.4.2 Knowledge Search with Ontology       147(4)
        Cache
        9.4.3 On SubO Structural Optimality        151(1)
      9.5 Dynamic Subontology Evolution            152(6)
        9.5.1 Chromosome Representation            152(2)
        9.5.2 Fitness Evaluation                   154(1)
        9.5.3 Genetic Operators                    154(3)
        9.5.4 Evolution Procedure                  157(1)
        9.5.5 Consistency                          158(1)
      9.6 Experiment and Evaluation                158(7)
        9.6.1 Experiment Design                    158(2)
        9.6.2 Compare Cache Performance            160(3)
        9.6.3 Knowledge Structure                  163(1)
        9.6.4 Traversal Depth for SubO             164(1)
        Extraction
      9.7 Related Work                             165(1)
      9.8 Conclusions                              166(5)
    10 Semantic Association Mining for             171(28)
    Traditional Chinese Medicine
      10.1 Introduction                            171(3)
        10.1.1 The Semantic Web for                171(1)
        Collaborative Knowledge Discovery
        10.1.2 The Motivating Story                172(1)
        10.1.3 HerbNet: The Knowledge Network      173(1)
        for Herbal Medicine
        10.1.4 Paper Organization                  174(1)
      10.2 Related Work                            174(3)
        10.2.1 Domain-Driven Relationship          174(1)
        Mining for Biomedicine
        10.2.2 Linked Data on the Semantic Web     175(1)
        10.2.3 Semantic Association Mining         176(1)
      10.3 Methods                                 177(8)
        10.3.1 Semantic Graph Model                177(1)
        10.3.2 Hypothesis and Hypothetical Graph   178(1)
        10.3.3 Evidence and Evidentiary Graph      179(2)
        10.3.4 Semantic Schema                     181(1)
        10.3.5 Semantic Association Mining         182(2)
        10.3.6 Semantic Association Ranking        184(1)
        10.3.7 Summary                             185(1)
      10.4 Evaluation                              185(6)
        10.4.1 Synthetic Graph Generation          186(1)
        10.4.2 Engine Implementation               186(1)
        10.4.3 Miner Implementation                187(2)
        10.4.4 Collaborative Discovery Process     189(1)
        10.4.5 Result Analysis                     190(1)
      10.5 Use Cases                               191(4)
        10.5.1 The HerbNet                         192(1)
        10.5.2 Formula System Interpretation       193(1)
        10.5.3 Herb---Drug Interaction Network     194(1)
        Analysis
      10.6 Conclusions                             195(4)
    11 Semantic-Based Database Integration for     199(14)
    Traditional Chinese Medicine
      11.1 Introduction                            199(2)
      11.2 System Architecture and Technical       201(1)
      Features
        11.2.1 System Architecture                 201(1)
        11.2.2 Technical Features                  201(1)
      11.3 Semantic Mediation                      202(3)
        11.3.1 Semantic View and View-Based        202(2)
        Mapping
        11.3.2 Visualized Semantic Mapping Tool    204(1)
      11.4 TCM Semantic Portals                    205(3)
        11.4.1 Dynamic Semantic Query Interface    205(1)
        11.4.2 Intuitive Search Interface with     206(2)
        Concepts Ranking and Semantic Navigation
      11.5 User Evaluation and Lesson Learned      208(1)
        11.5.1 Feedback from CATCM                 208(1)
        11.5.2 A Survey on the Usage of RDF/OWL    209(1)
        Predicates
      11.6 Related Work                            209(2)
        11.6.1 Semantic Web Context                209(2)
        11.6.2 Conventional Data Integration       211(1)
        Context
      11.7 Conclusions                             211(2)
    12 Probabilistic Semantic Relationship         213(10)
    Discovery from Traditional Chinese Medical
    Literature
      12.1 Background                              213(1)
      12.2 Related Work                            214(1)
      12.3 Methods                                 215(5)
        12.3.1 Instance Extraction                 215(1)
        12.3.2 Instance Pair Discovery             215(2)
        12.3.3 Semantic Relationship Evaluation    217(1)
        12.3.4 Probability-Based Semantic          218(2)
        Relationship Extraction
      12.4 Results and Discussions                 220(1)
      12.5 Conclusions                             221(2)
    13 Deriving Similarity Graphs from             223
    Traditional Chinese Medicine Linked Data on
    the Semantic Web
      13.1 Introduction                            223(1)
      13.2 Related Work                            224(1)
        13.2.1 Taxonomy-Based Approach             224(1)
        13.2.2 Relationship-Based Approach         224(1)
      13.3 SST Approach                            225(2)
        13.3.1 Similarity Transition               225(1)
        13.3.2 Similarity between Sets of          226(1)
        Objects
      13.4 Experiments and Results                 227(5)
        13.4.1 Dataset Preparation                 228(1)
        13.4.2 Results Analysis                    229(2)
        13.4.3 Result Visualization                231(1)
      13.5 Conclusions                             232

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上