
        Oxide Nanostructures : Growth, Microstructures, and Properties
        [Book Description]
        Nanomaterials, their synthesis, and property studies have been an obsession with modern current physicists, chemist, and materials scientists for their vast array of technological implications and the remarkable way their properties are modified or enhanced when the size dimensions are reduced to the realm of nanometers. Although nanomaterials, for a lot of practical purposes have been in existence since the remotest past of civilization, it is only in the last few decades that the field has been gaining the attention that it deserves from the scientific and industrial fraternity. A lot of this has to do with the immense improvement we made in tools to study and characterize these materials. Metal oxides have been one of the well documented and hottest branches of nanomaterials revolution with oxides such as TiO2, ZnO, CuO, Fe3O4, Cr2O3, Co3O4, MnO2 and many more being an integral part to a variety of technological advancements and industrial applications.From green power issues like photovoltaic cells to rechargeable batteries, from drug delivery agents to antimicrobial and cosmetic products, from superconductor materials to semiconductors and insulators, metal oxides have been omnipresent in terms of both commercial prerogatives and research highlights. This book is solely devoted towards this special section of nanomaterials with an aim to partially access the science pertaining to the oxides of metals.
        [Table of Contents]
        
Foreword                                           xv
          C.N.R. Rao
Foreword                                           xvii
          Ramesh Chandra Budhani
Foreword                                           xix
          Anand Mohan
Foreword                                           xxi
          Dr. Simon J. Holland
Preface                                            xxv
    1 Metal Oxide Nanomaterials: An Overview       1   (98)
          Kajal Kumar Dey
          Avanish Kumar Srivastava
      1.1 Initiation                               1   (2)
      1.2 Orientation with the Nanomaterials       3   (6)
      1.3 Metal Oxide Nanomaterials: Why Have      9   (19)
      They Become Indispensable?
        1.3.1 Photocatalytic Activity              9   (1)
        1.3.2 Photovoltaic Application             10  (2)
        1.3.3 Catalysis                            12  (2)
        1.3.4 Sensing Applications                 14  (1)
        1.3.5 Li-Ion Batteries                     15  (1)
        1.3.6 Capacitors                           16  (2)
        1.3.7 Biophysical Functionalities          18  (1)
        1.3.8 Nanofluid                            19  (1)
        1.3.9 Transparent Conducting Oxides        20  (1)
        1.3.10 Superconductivity                   21  (1)
        1.3.11 Antimicrobial Agent                 21  (1)
        1.3.12 Thermochromic Materials             21  (1)
        1.3.13 Electrochromic Materials            22  (1)
        1.3.14 Piezoelectric Materials             23  (1)
        1.3.15 Luminescence Materials              23  (1)
        1.3.16 Field Emitters                      24  (1)
        1.3.17 Lasers                              24  (1)
        1.3.18 Switches                            25  (1)
        1.3.19 Memresistor                         25  (1)
        1.3.20 Chromatographic Support             25  (1)
        1.3.21 Fuel Cells                          26  (1)
        1.3.22 Optical Recording and Other         26  (1)
        Information Storage Devices
        1.3.23 Abrasives and Polishing Agents      26  (1)
        1.3.24 Ultraviolet Filtration              27  (1)
      1.4 Various Synthesis Strategies for         28  (31)
      Metal Oxide Nanomaterials
        1.4.1 Physical Vapor Deposition            30  (1)
        1.4.1.1 Thermal evaporation                31  (1)
        1.4.1.2 Pulsed laser deposition            32  (1)
        1.4.1.3 Cathodic arc deposition            33  (1)
        1.4.1.4 Sputtering deposition              34  (1)
        1.4.1.5 Molecular beam epitaxy             35  (1)
        1.4.2 Chemical Vapor Deposition            36  (1)
        1.4.3 Atomic Layer Deposition              37  (1)
        1.4.4 Spray Pyrolysis                      38  (1)
        1.4.5 Thermochemical or Flame              39  (2)
        Deposition of Metal Organic Precursors
        1.4.6 Chemical/Solution Approach           41  (1)
        1.4.6.1 Coprecipitation                    41  (2)
        1.4.6.2 Hydrothermal/solvothermal          43  (2)
        approach
        1.4.6.3 Sol-gel approach                   45  (2)
        1.4.6.4 Microemulsions/micelles approach   47  (2)
        1.4.6.5 Thermolysis/thermochemical         49  (1)
        decomposition
        1.4.6.6 Electrodeposition                  50  (1)
        1.4.6.7 Oxidation and reduction            51  (1)
        1.4.6.8 Metathesis                         52  (1)
        1.4.6.9 Combustion synthesis               53  (1)
        1.4.6.10 Biomimetic approach               54  (1)
        1.4.6.11 Sonochemical approach             55  (1)
        1.4.6.12 Microwave heating                 56  (1)
        1.4.7 Milling                              57  (1)
        1.4.8 Lithography                          58  (1)
      1.5 Nature of Bonding and Defects            59  (4)
      1.6 Structural Characterization Tools for    63  (13)
      Metal Oxide Nanomaterials
        1.6.1 X-Ray Diffraction                    63  (2)
        1.6.2 Small Angle X-Ray Scattering         65  (1)
        1.6.3 Scanning Electron Microscopy         65  (1)
        1.6.4 Transmission Electron Microscopy     66  (1)
        1.6.5 Scanning Probe Microscopy            67  (1)
        1.6.6 Differential Scanning Calorimetry    68  (1)
        1.6.7 Superconducting Quantum              69  (1)
        Interference Magnetometry
        1.6.8 Ultraviolet-Visible Spectroscopy     69  (1)
        1.6.9 Secondary Ion Mass Spectroscopy      70  (1)
        1.6.10 Bruner-Emett--Teller Gas            70  (1)
        Adsorption Surface Area Measurement and
        Pore Structure Analysis
        1.6.11 X-Ray Photoelectron Spectroscopy    71  (1)
        1.6.12 Raman Spectroscopy                  71  (2)
        1.6.13 Fourier Transform Infrared          73  (1)
        Spectroscopy
        1.6.14 Electron Paramagnetic               74  (1)
        Resonance/Electron Spin Resonance
        1.6.15 Luminescence Spectroscopy           74  (2)
      1.7 The Others (Non-Metal Oxides)            76  (1)
      1.8 Future Prospects for Metal Oxide         77  (22)
      Nanomaterials
    2 Pulsed Laser Deposition of Nanostructured    99  (16)
    Oxides for Emerging Applications
          Carlo S. Casari
          Andrea Li Bassi
      2.1 Introduction                             100 (1)
      2.2 Pulsed Laser Deposition of Oxides        100 (10)
      with Tailored Properties
        2.2.1 Deposition Parameters Affecting      101 (3)
        Film Growth
        2.2.2 Experimental Apparatus               104 (1)
        2.2.3 Tuning of Morphological              105 (1)
        Properties of Oxides
        2.2.4 Tuning Structural Properties and     106 (3)
        Oxide Phase
        2.2.5 First Stages of Film Growth          109 (1)
      2.3 Applications                             110 (5)
    3 Metastable Phase Selection and               115 (38)
    Low-Temperature Plasticity in Chemically
    Synthesized Amorphous Al2O3-ZrO2 and
    Al2O3-Y2O3
          Ashutosh S. Gandhi
          Arindam Paul
          Shailendra Singh Shekhawat
          Umesh Waghmare
          Vikram Jayaram
      3.1 Introduction                             115 (3)
      3.2 Metastable Phase Selection in            118 (6)
      Al2O3--ZrO2 and Al2O3--Y2O3
        3.2.1 Phase Selection in Al2O3--ZrO2       119 (2)
        System
        3.2.2 Phase Selection in Al2O3--Y2O3       121 (3)
        System
      3.3 Consolidation of Amorphous Powders of    124 (10)
      Al2O3--ZrO2 and Al2O3--Y2O3
      3.4 Plastic Deformation of Glassy            134 (6)
      Al2O3--ZrO2 and Al2O3--Y203
      3.5 Modelling of the Structure of            140 (6)
      Amorphous Al2O3--Y2O3
      3.6 Concluding Remarks                       146 (7)
    4 Porous and Hollow Oxide Nanostructures:      153 (48)
    Synthesis, Stability and Applications
          Erumpukuthickal Ashokkumar Anumol
          Narayanan Ravishankar
      4.1 Introduction                             153 (1)
      4.2 Porous Structure: Definition             154 (1)
      4.3 Synthesis Methods for Porous             154 (12)
      Structures
        4.3.1 Template-Assisted Methods            155 (1)
        4.3.1.1 Surfactant template                155 (4)
        4.3.1.2 Emulsion templating                159 (2)
        4.3.2 Template-Less Methods                161 (1)
        4.3.2.1 Hydrothermal/solvothermal          161 (2)
        synthesis
        4.3.2.2 Combustion/annealing synthesis     163 (1)
        4.3.2.3 Aggregation                        164 (2)
        4.3.2.4 Anodization                        166 (1)
      4.4 Applications of Porous Structures        166 (3)
        4.4.1 Drug Delivery                        166 (1)
        4.4.2 Catalysis and Sensing                167 (1)
        4.4.3 Li-Ion Batteries                     168 (1)
        4.4.4 Solar Cells                          168 (1)
        4.4.5 Templates                            169 (1)
      4.5 Hollow Structures: Definition            169 (1)
      4.6 Synthesis Methods for Hollow             170 (17)
      Structures
        4.6.1 Template-Assisted Methods            170 (1)
        4.6.1.1 Polymeric template                 171 (3)
        4.6.1.2 Silica template                    174 (1)
        4.6.1.3 Other oxide materials as           175 (2)
        template
        4.6.1.4 Soft template                      177 (2)
        4.6.2 Template-Less Methods                179 (1)
        4.6.2.1 Kirkendall effect                  179 (3)
        4.6.2.2 Ostwald ripening                   182 (2)
        4.6.2.3 Other methods                      184 (1)
        4.6.2.4 Hollow nanostructures from         184 (3)
        nanoparticle aggregates
      4.7 Applications of Hollow Nanostructures    187 (2)
        4.7.1 Drug Delivery                        187 (1)
        4.7.2 Li-lon Battery Anode                 187 (1)
        4.7.3 Catalysis and Sensing                188 (1)
      4.8 Conclusions                              189 (12)
    5 Doped Tin Oxide Nanomaterials for            201 (16)
    Chlorine and Hydrogen Gas Detection
          Allen Chaparadza
          Hoang Tran
          Shankar B. Rananavare
      5.1 Introduction                             201 (2)
      5.2 Synthesis and Characterization of        203 (5)
      Nanomaterial-Based Devices for Chlorine
      and Hydrogen Sensing
        5.2.1 Preparation of Li(p-Type) and Sb     203 (1)
        (n-Type)-Doped SnO2 Nanoparticles
        5.2.2 n-Doped Tin Oxide Nanowires          204 (1)
        5.2.3 p-Doped Tin Oxide Nanowires          204 (1)
        5.2.4 Characterization of Li-and           205 (3)
        Sb-Doped SnO2
      5.3 Conduction Mechanisms in n- and          208 (2)
      p-Doped Nanoparticles
      5.4 Sensors for Cl2 and H2 Detection         210 (5)
        5.4.1 Sb-Doped SnO2 for Chlorine           211 (2)
        Detection
        5.4.2 Li-doped SnO2 for Hydrogen           213 (2)
        Detection
      5.5 Conclusions and Future Outlook           215 (2)
    6 Titanium Oxide Nano- and                     217 (38)
    Submicron-Structured Coating for Ti and
    Ti-Related Bio-Implants
          Shampa Aich
          Banasri Roy
      6.1 Introduction                             218 (2)
      6.2 Synthesis Routes                         220 (2)
      6.3 Characterization Techniques              222 (9)
        6.3.1 Biological Characterization          222 (3)
        6.3.2 Physical Characterization            225 (1)
        6.3.2.1 Thickness                          225 (1)
        6.3.2.2 Structural analyses                226 (1)
        6.3.2.3 Chemical composition and           227 (1)
        chemical depth profiling
        6.3.2.4 Morphology and microstructure      228 (2)
        6.3.2.5 Surface contact/energy and         230 (1)
        wettability
        6.3.3 Mechanical Characterization          230 (1)
      6.4 Biocompatibility of Titanium Oxide       231 (10)
      Coatings
        6.4.1 Blood Compatibility                  233 (1)
        6.4.1.1 Blood compatibility of titanium    233 (1)
        oxide compared to other coating
        materials
        6.4.1.2 Effect of thickness                234 (1)
        6.4.1.3 Effect of chemical nature          235 (1)
        6.4.1.4 Effect of phase                    236 (1)
        6.4.1.5 Effect of surface                  237 (1)
        6.4.2 Bone compatibility                   238 (1)
        6.4.2.1 Effect of roughness and porosity   238 (1)
        6.4.2.2 Effect of surface energy and       239 (1)
        wettability
        6.4.2.3 Using seeds                        240 (1)
        6.4.2.4 Effect of phase                    241 (1)
      6.5 Conclusions                              241 (14)
    7 Metal Oxide Nanostructured Films for         255 (28)
    Photovoltaic Applications
          S.K. Tripathi
      7.1 Introduction to Nanotechnology           255 (3)
        7.1.1 Metal Oxide Nanomaterials            257 (1)
        7.1.2 Titanium Dioxide as a Material       258 (1)
      7.2 Crystal Structure of TiO2                258 (2)
      7.3 Electron Transport in TiO2               260 (2)
      7.4 Introduction to Photovoltaics            262 (4)
        7.4.1 Solar Irradiation                    264 (1)
        7.4.2 Photovoltaic Characterization        265 (1)
      7.5 Dye-Sensitized Solar Cell                266 (9)
        7.5.1 Metal Oxide Thin Films for           268 (1)
        Dye-Sensitized Solar Cell
        7.5.2 TiO2 Photoelectrode with             269 (1)
        Scattering Layer
        7.5.3 Metal-Doped Titania (TiO2)           270 (2)
        Photoelectrode
        7.5.4 Core-Shell Composite of Titania      272 (2)
        (TiO2) and Other Metal Oxides for
        Photoelectrode
        7.5.5 TiO2 Coupled with Other              274 (1)
        Semiconductors
      7.6 Synthesis Techniques                     275 (8)
        7.6.1 Hydrothermal Synthesis               275 (1)
        7.6.2 Combustion                           275 (1)
        7.6.3 Gas Phase Methods                    276 (1)
        7.6.4 Microwave Synthesis                  276 (1)
        7.6.5 Sol-Gel Processing                   277 (6)
    8 Nanostructured Materials as Nanoprobes       283 (40)
    for Bioimaging Applications
          S.D. Geethanjali
          A. Vadivel Murugan
      8.1 Overview                                 283 (1)
      8.2 Introduction                             284 (1)
      8.3 Nanoprobes for Bioimaging Applications   285 (29)
        8.3.1 Nanostructured Materials as          285 (1)
        Nanoprobes
        8.3.1.1 Size of the nanoprobe              285 (1)
        8.3.1.2 Nanoparticle shape                 286 (1)
        8.3.1.3 Nanoparticle composition           287 (1)
        8.3.1.4 Nanomaterial functionalization     287 (2)
        8.3.1.5 Nanoprobe--biomolecule             289 (1)
        interaction
        8.3.1.6 Drug delivery route and in vivo    290 (1)
        targeting
        8.3.2 Conventional Nanoprobes              290 (1)
        8.3.2.1 Gold-based nanomaterials           291 (4)
        8.3.2.2 Semiconductor quantum dots         295 (1)
        8.3.2.3 Photodynamic therapy               296 (1)
        8.3.3 Oxide--Based Bioimaging Probes       297 (1)
        8.3.3.1 Iron oxide-based magnetic          297 (1)
        bioimaging probes
        8.3.3.2 Rare earth oxide-based             298 (1)
        nanoprobes
        8.3.3.3 Silica-based nanoprobes            299 (1)
        8.3.3.4 Zinc oxide (ZnO)-based             299 (1)
        nanoprobes
        8.3.4 Newer Generation Nanoprobes          300 (1)
        8.3.4.1 III-V semiconductor nanoprobes     300 (1)
        8.3.4.2 Lanthanide-based nanoprobes        301 (10)
        8.3.4.3 Carbon-based nanomaterials as      311 (3)
        nanoprobes
      8.4 Conclusion                               314 (9)
    9 Band Energy and Crystal Structure            323 (22)
    Employing Density Functional Theory
          Piyush Dua
          Avanish Kumar Srivastava
      9.1 Importance of Oxide Nanostructures       323 (4)
      9.2 Zinc Oxide Nanostructures                327 (2)
        9.2.1 1D ZnO Nanostructures                327 (1)
        9.2.2 Stability of Various ZnO 1D          328 (1)
Nanostructures
        9.2.3 Geometric and Electronic             329 (1)
        Structures of Pristine ZnO [6,0) SWNT
      9.3 TiO2 Nanostructures                      329 (5)
        9.3.1 TiO2 Nanosheets                      332 (2)
      9.4 Summary                                  334 (11)
    10 Paramagnetic Lattice Defects in Natural     345 (26)
    Crystalline Quartz
          Shin Toyoda
      10.1 Introduction                            346 (1)
      10.2 Paramagnetic Centers Observable in      347 (4)
      Natural Crystalline Quartz
        10.2.1 Aluminum Hole Center                347 (1)
        10.2.2 Germanium Centers                   348 (1)
        10.2.3 Titanium Centers                    349 (1)
        10.2.4 E'1 Center                          349 (2)
      10.3 Formation of the E'1 Center             351 (3)
      10.4 Decay of Oxygen Vacancies               354 (1)
      10.5 Formation of Oxygen Vacancies           355 (5)
      10.6 Applications to Provenance Research     360 (2)
      10.7 Impurity Centers                        362 (3)
      10.8 Summary                                 365 (6)
    11 ZnO Nanoparticles: Defect Structure,        371
    Space-Charge Depletion Layer, and
    Core--Shell Model
          Emre Erdem
          Rudiger-A. Eichel
      11.1 Introduction                            371