
        Multi Length-Scale Characterisation
        [Book Description]
        This volume examines important experimental techniques needed to characterise inorganic materials in order to elucidate their properties for practical application. Addressing methods that examine the structures and properties of materials over length scales ranging from local atomic order to long-range order on the meso- and macro-scopic scales, Multi Length-Scale Characterisation contains five detailed chapters: * Measurement of Bulk Magnetic Properties * Thermal Methods * Atomic Force Microscopy * Gas Sorption in the Analysis of Nanoporous Solids * Dynamic Light Scattering Ideal as a complementary reference work to other volumes in the series (Local Structural Characterisation and Structure from Diffraction Methods) or as an examination of the specific characterisation techniques in their own right, Multi Length-Scale Characterisation is a valuable addition to the Inorganic Materials Series.
        [Table of Contents]
        
        
Inorganic Materials Series Preface                 xi
Preface                                            xiii
        List of Contributors                       xv
    1 Measurement of Bulk Magnetic Properties      1   (62)
          Scott S. Turner
      1.1 Introduction                             1   (33)
        1.1.1 Purpose and Scope                    3   (1)
        1.1.2 The Origin of Magnetic Properties    4   (4)
        1.1.3 The Units of Magnetism               8   (2)
        1.1.4 Magnetism due to Paired Electrons    10  (2)
        1.1.5 Magnetism due to Unpaired            12  (11)
        Electrons
        1.1.6 Magnetic Materials with              23  (7)
        Long-Range Order
        1.1.7 Brief Notes on Other Types of        30  (3)
        Magnetism
        1.1.8 General Considerations for the       33  (1)
        Measurement of Magnetic Properties
      1.2 Magnetic Measurement based on            34  (4)
      Measuring a Force or Torque
        1.2.1 The Gouy Balance                     34  (2)
        1.2.2 The Evans Balance (or Inverse        36  (2)
        Gouy Method)
        1.2.3 The Faraday Balance                  38  (1)
      1.3 Magnetic Measurement based on            38  (15)
      Induction
        1.3.1 The DC SQUID Magnetometer            38  (11)
        1.3.2 AC Magnetometry                      49  (3)
        1.3.3 The Micro- (and Nano-) SQUID         52  (1)
        1.3.4 The Vibrating Sample Magnetometer    52  (1)
        (VSM)
      1.4 The Evans NMR Method                     53  (1)
      1.5 Brief Notes on Complementary             54  (9)
      Techniques
        1.5.1 Electron Paramagnetic Resonance      54  (1)
        (EPR)
        1.5.2 Ultraviolet--Visible Spectroscopy    55  (1)
        1.5.3 Thermal Techniques                   56  (1)
        1.5.4 Mossbauer Spectroscopy               56  (1)
        1.5.5 Measuring Local Magnetic Fields      57  (2)
        with Muons and Neutrons
        References                                 59  (4)
    2 Thermal Methods                              63  (58)
          Michel B. Johnson
          Mary Anne White
      2.1 Introduction                             63  (1)
      2.2 Thermal Analysis                         64  (21)
        2.2.1 Thermogravimetric Analysis           64  (3)
        2.2.2 Differential Thermal Analysis        67  (7)
        2.2.3 Differential Scanning Calorimetry    74  (9)
        2.2.4 Example of a Coupled                 83  (1)
        Thermoanalytical Technique
        2.2.5 Concluding Comments Concerning       84  (1)
        Thermal Analysis
      2.3 Heat Capacity                            85  (10)
        2.3.1 Background                           85  (1)
        2.3.2 Adiabatic Calorimetry                86  (1)
        2.3.3 Relaxation Calorimetry               87  (3)
        2.3.4 Other Heat-Capacity Methods          90  (2)
        2.3.5 Estimation of Heat Capacity          92  (3)
      2.4 Thermal Conductivity                     95  (13)
        2.4.1 Background                           95  (2)
        2.4.2 Steady-State Method                  97  (2)
        2.4.3 Guarded Hot-Plate Method             99  (1)
        2.4.4 Parallel Thermal Conductance         100 (2)
        Method
        2.4.5 Power-Pulse Method                   102 (1)
        2.4.6 Laser-Flash Diffusivity              103 (2)
        2.4.7 Hot-Wire Method                      105 (1)
        2.4.8 3ω Method                      106 (2)
      2.5 Thermal Expansion                        108 (6)
        2.5.1 Terminology and Atomic Origins       108 (2)
        2.5.2 Diffraction Methods                  110 (1)
        2.5.3 Dilatometry                          111 (3)
      2.6 Conclusion                               114 (7)
        References                                 115 (6)
    3 Atomic Force Microscopy                      121 (74)
          Pablo Cubillas
          Michael W. Anderson
      3.1 Introduction                             121 (1)
      3.2 History                                  122 (1)
      3.3 The Basics of How AFM Works              123 (23)
        3.3.1 Instrument Architecture              123 (4)
        3.3.2 Basic Scanning Modes                 127 (6)
        3.3.3 Cantilevers and Tips                 133 (7)
        3.3.4 Image Artefacts                      140 (5)
        3.3.5 Scanning Environment                 145 (1)
        3.3.6 Sample Preparation                   146 (1)
      3.4 Important Developments in AFM            146 (10)
        3.4.1 Tip Functionalisation/Chemical       146 (1)
        Force Microscopy
        3.4.2 Nanotubes as Nanoprobes              147 (1)
        3.4.3 Frequency Modulation                 148 (1)
        3.4.4 Higher Harmonics                     149 (1)
        3.4.5 Atomic Resolution                    150 (1)
        3.4.6 Hydrothermal AFM                     151 (1)
        3.4.7 Video-Rate AFM                       152 (1)
        3.4.8 Active Cantilevers                   153 (1)
        3.4.9 Dip-Pen Nanolithography              154 (1)
        3.4.10 Scanning Near-Field Optical         154 (1)
        Microscopy
        3.4.11 Raman/AFM                           155 (1)
      3.5 Specialised Scanning Modes               156 (8)
        3.5.1 Phase Imaging                        156 (1)
        3.5.2 Force-Modulation AFM                 156 (1)
        3.5.3 Friction Force Microscopy            157 (2)
        3.5.4 Force Volume                         159 (1)
        3.5.5 Magnetic Force Microscopy            159 (2)
        3.5.6 Electric Force Microscopy            161 (1)
        3.5.7 Kelvin-Probe Force Microscopy        162 (1)
        3.5.8 Piezoresponse Force Microscopy       162 (1)
        3.5.9 Nanoindenting                        163 (1)
      3.6 Applications                             164 (31)
        3.6.1 General Considerations               164 (1)
        3.6.2 Atomic-Resolution, Non-Contact       165 (7)
        AFM of Metal Oxides
        3.6.3 Atomic-Resolution,                   172 (3)
        Frequency-Modulated AFM in Liquids
        3.6.4 Crystal Growth                       175 (5)
        3.6.5 Atom Manipulation with AFM           180 (1)
        3.6.6 Data Storage                         181 (2)
        3.6.7 Oxide Epitaxial Overgrowths          183 (1)
        3.6.8 Hydrothermal AFM                     184 (1)
        References                                 185 (10)
    4 Gas Sorption in the Analysis of              195 (38)
    Nanoporous Solids
          Philip L. Llewellyn
      4.1 Introduction                             195 (3)
      4.2 What is Adsorption, Why do Fluids        198 (6)
      Adsorb and How Can Adsorption Phenomena
      be Visualised?
      4.3 Adsorption Experiments                   204 (8)
        4.3.1 Adsorption Devices                   204 (1)
        4.3.2 Experimental Protocol                205 (7)
      4.4 Interpretation of Isotherms to           212 (15)
      Estimate Porous Solid Characteristics
        4.4.1 Evaluation of Isotherm Type and      212 (4)
        Shape
        4.4.2 Evaluation of Specific Surface       216 (2)
        Area using the BET Model
        4.4.3 Evaluation of External Surface       218 (4)
        Area and Pore Volume using the t- or
        αs-Method
        4.4.4 Evaluation of Micropore Size: The    222 (2)
        Horvath--Kawazoe Methodology
        4.4.5 Evaluation of both Micropore and     224 (3)
        Mesopore Size using DFT/GCMC Treatment
        and Isotherm Reconstruction
      4.5 Conclusion                               227 (6)
        References                                 229 (4)
    5 Dynamic Light Scattering                     233 (50)
          Erika Eiser
      5.1 Introduction                             233 (2)
      5.2 Theoretical Background                   235 (15)
        5.2.1 Scattering Intensities and the       243 (4)
        Autocorrelation Function
        5.2.2 Homodyne versus Heterodyne           247 (2)
        Detection
        5.2.3 Relations between the Correlation    249 (1)
        Functions and Static Light Scattering
      5.3 Applications                             250 (12)
        5.3.1 Particle Sizing                      250 (1)
        5.3.2 Identical Spherical Colloids in      251 (2)
        Dilute Suspensions
        5.3.3 Particle Sizing in Realistic         253 (8)
        Systems: Size Distributions
        5.3.4 Dense Systems                        261 (1)
      5.4 Instrumental Developments and New        262 (10)
      Methods
        5.4.1 Fibre-Optic DLS                      262 (2)
        5.4.2 Differential Dynamic Microscopy      264 (8)
      5.5 Physical Chemistry Applications          272 (7)
        5.5.1 Particle Sizing Revisited            273 (1)
        5.5.2 Quantum Dots, Gold and Other         274 (2)
        Nanocrystals
        5.5.3 Self-Assembling Systems:             276 (3)
        Micelles, Vesicles and Other
        Equilibrium Structures
      5.6 Conclusion                               279 (4)
        References                                 279 (4)
Index                                              283