Multi Length-Scale Characterisation
[Book Description]
This volume examines important experimental techniques needed to characterise inorganic materials in order to elucidate their properties for practical application. Addressing methods that examine the structures and properties of materials over length scales ranging from local atomic order to long-range order on the meso- and macro-scopic scales, Multi Length-Scale Characterisation contains five detailed chapters: * Measurement of Bulk Magnetic Properties * Thermal Methods * Atomic Force Microscopy * Gas Sorption in the Analysis of Nanoporous Solids * Dynamic Light Scattering Ideal as a complementary reference work to other volumes in the series (Local Structural Characterisation and Structure from Diffraction Methods) or as an examination of the specific characterisation techniques in their own right, Multi Length-Scale Characterisation is a valuable addition to the Inorganic Materials Series.
[Table of Contents]
Inorganic Materials Series Preface xi
Preface xiii
List of Contributors xv
1 Measurement of Bulk Magnetic Properties 1 (62)
Scott S. Turner
1.1 Introduction 1 (33)
1.1.1 Purpose and Scope 3 (1)
1.1.2 The Origin of Magnetic Properties 4 (4)
1.1.3 The Units of Magnetism 8 (2)
1.1.4 Magnetism due to Paired Electrons 10 (2)
1.1.5 Magnetism due to Unpaired 12 (11)
Electrons
1.1.6 Magnetic Materials with 23 (7)
Long-Range Order
1.1.7 Brief Notes on Other Types of 30 (3)
Magnetism
1.1.8 General Considerations for the 33 (1)
Measurement of Magnetic Properties
1.2 Magnetic Measurement based on 34 (4)
Measuring a Force or Torque
1.2.1 The Gouy Balance 34 (2)
1.2.2 The Evans Balance (or Inverse 36 (2)
Gouy Method)
1.2.3 The Faraday Balance 38 (1)
1.3 Magnetic Measurement based on 38 (15)
Induction
1.3.1 The DC SQUID Magnetometer 38 (11)
1.3.2 AC Magnetometry 49 (3)
1.3.3 The Micro- (and Nano-) SQUID 52 (1)
1.3.4 The Vibrating Sample Magnetometer 52 (1)
(VSM)
1.4 The Evans NMR Method 53 (1)
1.5 Brief Notes on Complementary 54 (9)
Techniques
1.5.1 Electron Paramagnetic Resonance 54 (1)
(EPR)
1.5.2 Ultraviolet--Visible Spectroscopy 55 (1)
1.5.3 Thermal Techniques 56 (1)
1.5.4 Mossbauer Spectroscopy 56 (1)
1.5.5 Measuring Local Magnetic Fields 57 (2)
with Muons and Neutrons
References 59 (4)
2 Thermal Methods 63 (58)
Michel B. Johnson
Mary Anne White
2.1 Introduction 63 (1)
2.2 Thermal Analysis 64 (21)
2.2.1 Thermogravimetric Analysis 64 (3)
2.2.2 Differential Thermal Analysis 67 (7)
2.2.3 Differential Scanning Calorimetry 74 (9)
2.2.4 Example of a Coupled 83 (1)
Thermoanalytical Technique
2.2.5 Concluding Comments Concerning 84 (1)
Thermal Analysis
2.3 Heat Capacity 85 (10)
2.3.1 Background 85 (1)
2.3.2 Adiabatic Calorimetry 86 (1)
2.3.3 Relaxation Calorimetry 87 (3)
2.3.4 Other Heat-Capacity Methods 90 (2)
2.3.5 Estimation of Heat Capacity 92 (3)
2.4 Thermal Conductivity 95 (13)
2.4.1 Background 95 (2)
2.4.2 Steady-State Method 97 (2)
2.4.3 Guarded Hot-Plate Method 99 (1)
2.4.4 Parallel Thermal Conductance 100 (2)
Method
2.4.5 Power-Pulse Method 102 (1)
2.4.6 Laser-Flash Diffusivity 103 (2)
2.4.7 Hot-Wire Method 105 (1)
2.4.8 3ω Method 106 (2)
2.5 Thermal Expansion 108 (6)
2.5.1 Terminology and Atomic Origins 108 (2)
2.5.2 Diffraction Methods 110 (1)
2.5.3 Dilatometry 111 (3)
2.6 Conclusion 114 (7)
References 115 (6)
3 Atomic Force Microscopy 121 (74)
Pablo Cubillas
Michael W. Anderson
3.1 Introduction 121 (1)
3.2 History 122 (1)
3.3 The Basics of How AFM Works 123 (23)
3.3.1 Instrument Architecture 123 (4)
3.3.2 Basic Scanning Modes 127 (6)
3.3.3 Cantilevers and Tips 133 (7)
3.3.4 Image Artefacts 140 (5)
3.3.5 Scanning Environment 145 (1)
3.3.6 Sample Preparation 146 (1)
3.4 Important Developments in AFM 146 (10)
3.4.1 Tip Functionalisation/Chemical 146 (1)
Force Microscopy
3.4.2 Nanotubes as Nanoprobes 147 (1)
3.4.3 Frequency Modulation 148 (1)
3.4.4 Higher Harmonics 149 (1)
3.4.5 Atomic Resolution 150 (1)
3.4.6 Hydrothermal AFM 151 (1)
3.4.7 Video-Rate AFM 152 (1)
3.4.8 Active Cantilevers 153 (1)
3.4.9 Dip-Pen Nanolithography 154 (1)
3.4.10 Scanning Near-Field Optical 154 (1)
Microscopy
3.4.11 Raman/AFM 155 (1)
3.5 Specialised Scanning Modes 156 (8)
3.5.1 Phase Imaging 156 (1)
3.5.2 Force-Modulation AFM 156 (1)
3.5.3 Friction Force Microscopy 157 (2)
3.5.4 Force Volume 159 (1)
3.5.5 Magnetic Force Microscopy 159 (2)
3.5.6 Electric Force Microscopy 161 (1)
3.5.7 Kelvin-Probe Force Microscopy 162 (1)
3.5.8 Piezoresponse Force Microscopy 162 (1)
3.5.9 Nanoindenting 163 (1)
3.6 Applications 164 (31)
3.6.1 General Considerations 164 (1)
3.6.2 Atomic-Resolution, Non-Contact 165 (7)
AFM of Metal Oxides
3.6.3 Atomic-Resolution, 172 (3)
Frequency-Modulated AFM in Liquids
3.6.4 Crystal Growth 175 (5)
3.6.5 Atom Manipulation with AFM 180 (1)
3.6.6 Data Storage 181 (2)
3.6.7 Oxide Epitaxial Overgrowths 183 (1)
3.6.8 Hydrothermal AFM 184 (1)
References 185 (10)
4 Gas Sorption in the Analysis of 195 (38)
Nanoporous Solids
Philip L. Llewellyn
4.1 Introduction 195 (3)
4.2 What is Adsorption, Why do Fluids 198 (6)
Adsorb and How Can Adsorption Phenomena
be Visualised?
4.3 Adsorption Experiments 204 (8)
4.3.1 Adsorption Devices 204 (1)
4.3.2 Experimental Protocol 205 (7)
4.4 Interpretation of Isotherms to 212 (15)
Estimate Porous Solid Characteristics
4.4.1 Evaluation of Isotherm Type and 212 (4)
Shape
4.4.2 Evaluation of Specific Surface 216 (2)
Area using the BET Model
4.4.3 Evaluation of External Surface 218 (4)
Area and Pore Volume using the t- or
αs-Method
4.4.4 Evaluation of Micropore Size: The 222 (2)
Horvath--Kawazoe Methodology
4.4.5 Evaluation of both Micropore and 224 (3)
Mesopore Size using DFT/GCMC Treatment
and Isotherm Reconstruction
4.5 Conclusion 227 (6)
References 229 (4)
5 Dynamic Light Scattering 233 (50)
Erika Eiser
5.1 Introduction 233 (2)
5.2 Theoretical Background 235 (15)
5.2.1 Scattering Intensities and the 243 (4)
Autocorrelation Function
5.2.2 Homodyne versus Heterodyne 247 (2)
Detection
5.2.3 Relations between the Correlation 249 (1)
Functions and Static Light Scattering
5.3 Applications 250 (12)
5.3.1 Particle Sizing 250 (1)
5.3.2 Identical Spherical Colloids in 251 (2)
Dilute Suspensions
5.3.3 Particle Sizing in Realistic 253 (8)
Systems: Size Distributions
5.3.4 Dense Systems 261 (1)
5.4 Instrumental Developments and New 262 (10)
Methods
5.4.1 Fibre-Optic DLS 262 (2)
5.4.2 Differential Dynamic Microscopy 264 (8)
5.5 Physical Chemistry Applications 272 (7)
5.5.1 Particle Sizing Revisited 273 (1)
5.5.2 Quantum Dots, Gold and Other 274 (2)
Nanocrystals
5.5.3 Self-Assembling Systems: 276 (3)
Micelles, Vesicles and Other
Equilibrium Structures
5.6 Conclusion 279 (4)
References 279 (4)
Index 283