新书报道
当前位置: 首页 >> 电子电气计算机信息科学 >> 正文
Recent advances in laser processing of materials
发布日期:2007-06-27  浏览

[内容简介]:
Laser materials interaction and processing is an established and growing field within the materials science community. By taking a detailed look at the fundamentals of laser matter interaction, this book charts the recent progress of laser materials interaction and processing in various emerging materials science domains.
With special emphasis placed on nanostructures and future developments, this book provides an interdisciplinary support for basic and applied photo-assisted processing research.

Table Of Contents

Introduction to the Laser Processing of Materials

      J. Perri?e, E. Millon and E. Fogarassy

Chapter 1. Laser Ablation-Based Synthesis of Nanomaterials

       A.V. Kabashin and M. Meunier

                    1.1. Introduction

                    1.2. General Aspects of Laser Ablation and Nanocluster Formation

                           1.2.1. Nucleation

                           1.2.2. Kinetics-Controlled Growth

                           1.2.3. Diffusion-Controlled Growth

                           1.2.4. Transition Phase

                           1.2.5. Ostwald Ripening

                    1.3. Synthesis of Nanomaterials in Gaseous Environment

                           1.3.1. Configuration of Conventional Pulsed-Laser Deposition for Production of Nanomaterials

                           1.3.2. Studies of Laser Ablation-Based Nanocluster Growth in a Residual Buffer Gas

                           1.3.3. Properties of Nanostructured Si-Based Films Prepared by Pulsed-Laser Deposition

                           1.3.4. Use of Other Laser Ablation-Based Methods for Producing Nanostructures

                    1.4. Synthesis of Nanomaterials in Liquid Environment: Production of Colloidal Nanoparticles

                           1.4.1. Physical Aspects of Laser Ablation in Liquid Environment

                           1.4.2. Fabrication of Ultrapure Colloids in Chemical Solutions

                    1.5. Conclusions

Chapter 2. Metal?ielectric Nanocomposites Produced by Pulsed Laser Deposition: A Route for New Functional Materials

       C.N. Afonso, J. Gonzalo, R. Serna and J. Solis

                    2.1. Introduction

                    2.2. Production of Metal?ielectric Nanocomposites

                           2.2.1. Features, Advantages and Limitations of Pulsed Laser Deposition

                           2.2.2. Control of the Deposition Sequence: Alternate PLD

                           2.2.3. The Role of PLD Parameters on Morphological and Structural Properties of Nanocomposite Films

                    2.3. Properties and Applications of Metal?ielectric Nanocomposites

                           2.3.1. Optical Properties

                           2.3.2. Magnetic Properties

                           2.3.3. Thermal Properties

                    2.4. Summary and Future Trends

Chapter 3. Carbon-Based Materials by Pulsed Laser Deposition: From Thin Films to Nanostructures

       T. Sz??yi

                    3.1. Introduction

                    3.2. The Peculiarities of Pulsed Laser Deposition

                    3.3. Pulsed Laser Deposition of Pure Carbon Forms

                           3.3.1. PLD of DLC in Vacuum

                           3.3.2. Ablation in Inert Gas Atmospheres: He, Ar, Xe

                           3.3.3. Ablation in Hydrogen and Oxygen Ambient

                           3.3.4. Production of Nanotubes

                    3.4. Pulsed Laser Deposition of Carbon Compounds ?A Case Study of Carbon Nitride

Chapter 4. Fabrication of Micro-optics in Polymers and in UV Transparent Materials

      G. Kopitkovas, L. Urech and T. Lippert

                    4.1. Introduction

                    4.2. Laser Ablation of Polymers

                           4.2.1. Mechanisms and Models

                           4.2.2. Commercially Available and Designed Polymers

                    4.3. Methods for the Fabrication of Micro-optical Elements in Polymers

                           4.3.1. Laser Beam Writing

                           4.3.2. Fabrication of Micro-optics using Laser Ablation and Half Tone or Diffractive Gray Tone Masks

                    4.4. Microstructuring of UV Transparent Materials

                           4.4.1. Fabrication and Applications of Micro-optical Elements in Quartz

                    4.5. Conclusions

Chapter 5. Ultraviolet Laser Ablation of Polymers and the Role of Liquid Formation and Expulsion

       S. Lazare and V. Tokarev

                    5.1. Introduction

                    5.2. Polymers and Lasers: The Situation in 2005

                    5.3. From Ablation Curve to Ablation Recoil Pressure

                    5.4. Experimental

                           5.4.1. General Setup Designed for Laser Microdrilling

                           5.4.2. Precision Lens Projection Setup for Submicron Ablation

                    5.5. Microdrilling

                           5.5.1. Rate of Drilling and Stationary Profile with PET Example

                           5.5.2. Other Polymers

                           5.5.3. Search for the Optimum Aspect Ratio

                           5.5.4. Model

                           5.5.5. Mechanisms and Perspectives

                           5.5.6. Microdrilling Summary

                    5.6. Submicron Resolution

                           5.6.1. Two Beams Imaging Experiments by Filtering

                           5.6.2. Defocus Adjustment Experiments (3 Beams)

                           5.6.3. Discussion and Perspectives of Submicron Experiments

                    5.7. Viscous Microflow on Polymers Induced by Ablation

                    5.8. Phase Explosion and Formation of Nanofibers on PMMA

                           5.8.1. Possible Mechanisms

                    5.9. Comparison with Ablation of Metals (Titanium)

                    5.10. Conclusions and Perspectives

Chapter 6. Nanoscale Laser Processing and Micromachining of Biomaterials and Biological Components

       D.B. Chrisey, S. Qadri, R. Modi, D.M. Bubb, A. Doraiswamy, T. Patz and R. Narayan

                    6.1. Introduction

                           6.1.1. Nanotechnology in Biology and Medicine

                           6.1.2. Laser Material Interactions for Biological Materials

                    6.2. Nanoscale Laser Processing and Micromachining of Biomaterials and Biological Components

                           6.2.1. Matrix Assisted Pulsed Laser Deposition of Novel Drug Delivery Coatings

                           6.2.2. Resonant Infrared Pulsed Laser Deposition of Drug Delivery Coatings

                           6.2.3. Resonant Infrared Matrix Assisted Pulsed Laser Evaporation

                           6.2.4. Laser Micromachining of Differentially Adherent Substrate for Three-Dimensional Myoid Fabrication

                           6.2.5. Matrix Assisted Pulsed Laser Evaporation Direct Write Applied to the Fabrication of Three-Dimensional Tissue Constructs

                           6.3. Conclusions

Chapter 7. Direct Transfer and Microprinting of Functional Materials by Laser-Induced Forward Transfer

       K.D. Kyrkis, A.A. Andreadaki, D.G. Papazoglou and I. Zergioti

                    7.1. Introduction to the Laser-Induced Transfer Methods

                           7.1.1. Overview of the Laser-Induced Forward Transfer Process

                           7.1.2. Laser Transfer Methods

                    7.2. Laser Microprinting for Electronics and Optoelectronics

                           7.2.1 Conventional Pattern Transfer Processes

                           7.2.2. Laser Printing for Electronics and Power Devices

                           7.2.3. Laser Printing for Organic Optoelectronics

                    7.3. Laser Printing of Biomaterials

                    7.4. Physics of the LIFT Method ?Time-Resolved Imaging Diagnostics

                    7.5. Summary and Future Aspects

Chapter 8. Recent Progress in Direct Write 2D and 3D Photofabrication Techniques with Femtosecond Laser Pulses

       J. Koch, T. Bauer, C. Reinhardt and B.N. Chichkov

                    8.1. Laser Photofabrication Technique/Introduction

                           8.1.1. Ablative Micro- and Nanostructuring with Femtosecond Laser Pulses

                           8.1.2. Two-Photon Polymerization (2PP) Technique

                           8.1.3. Multiphoton Activated Processing (MAP)

                    8.2. High-Resolution 2D Photofabrication Technique with Femtosecond Laser Pulses

                    8.3. Nanotexturing of Metals by Laser-Induced Melt Dynamics

                    8.4. Deep Drilling and Cutting with Ultrashort Laser Pulses

                    8.5. 3D Photofabrication and Microstructuring

                    8.6. Application Examples

                           8.6.1. Plasmonics

                           8.6.2. Microfluidics

                    8.7. Summary and Outlook

Chapter 9. Self-Organized Surface Nanostructuring by Femtosecond Laser Processing

             J. Reif, F. Costache and M. Bestehorn

                    9.1. Introduction

                    9.2. Classical Picture of Laser Induced Periodic Surface Structure (LIPSS) Formation

                    9.3. Typical Laser induced Surface Nanostruclures

                    9.4. Dynamics of Femtosecond Laser Ablation from Dielectrics and Semiconductors: Generation of Surface Instabilities

                    9.5. Self-Organized Pattern Formation from Instabilities: Femtosecond Laser Ablation and Ion Beam Erosion

                    9.6. Summary and Outlook

Chapter 10. Three-Dimensional Micromachining with Femtosecond Laser Pulses

       W. Watanabe and K. Itoh

                    10.1. Introduction

                    10.2. Femtosecond Laser-Induced Refractive-Index Change

                           10.2.1. Induction of Refractive-Index Change

                           10.2.2. Fabrication of Waveguides

                    10.3. Refractive-Index Change by Filamentation

                           10.3.1. Filamentation

                           10.3.2. Induction of Refractive-Index Change

                           10.3.3. Waveguide and Coupler

                           10.3.4. Grating

                           10.3.5. Diffractive Lens

                    10.4. Void

                           10.4.1. Formation of Void

                           10.4.2. Binary Data Storage

                           10.4.3. Fresnel Zone Plate

                    10.5. Two-Beam Interference

                           10.5.1. Holographic Grating

                           10.5.2. Holographic Memory

                    10.6. Microchannel

                    10.7. Summary

Chapter 11. Laser Crystallization of Silicon Thin Films for Flat Panel Display Applications

       A.T. Voutsas

                    11.1. Introduction

                    11.2. The Evolution in Poly-Si Crystallization Technology

                           11.2.1. Solid-Phase Crystallization (SPC)

                           11.2.2. Laser Crystallization Technology

                    11.3. Si Transformation by Laser Crystallization (LC)

                           11.3.1. Conventional LC

                           11.3.2. Advanced Lateral Growth (LC) Technology

                           11.3.3. Laterally Grown Poly-Si Microstructure

                    11.4. Characteristics of Advanced Poly-Si TFTs

                           11.4.1. Material-Quality to Device-Performance Correlation

                           11.4.2. Performance Predictions for Advanced Poly-Si TFTs

                    11.5. Remaining Challenges in Si Crystallization

Chapter 12. Long Pulse Excimer Laser Doping of Silicon and Silicon Carbide for High Precision Junction Fabrication

       E. Fogarassy and J. Venturini

                    12.1. Introduction

                    12.2. Laser Doping of Silicon

                           12.2.1. Introduction: CMOS Technology

                           12.2.2. Thermal Simulations

                           12.2.3. Laser Annealing of Implanted Silicon (Liquid and Solid Phase)

                           12.2.4. Laser Induced Diffusion from Spin-On Glass

                    12.3. Laser Doping of Silicon Carbide

                           12.3.1. Introduction

                           12.3.2. Simulations

                           12.3.3. Experimental Conditions

                           12.3.4. Results

                           12.3.5. Conclusion

                    12.4. General Conclusion

Chapter 13. Laser Cleaning: State of the Art

       Ph. Delaporte and R. Oltra

                    13.1. Introduction to Laser Cleaning

                           13.1.1. Cleaning Processes

                           13.1.2. The Basic Laser Material Interaction of the Laser Cleaning Process

                    13.2. Mechanisms and Performances

                           13.2.1. Laser Removal of Particles

                           13.2.2. Laser Removal of Superficial Layers

                    13.3. Laser Cleaning Applications

                           13.3.1. Typical Laser Cleaning Setup

                           13.3.2. Microelectronic Industry

                           13.3.3. Nuclear Industry

                           13.3.4. Art Cleaning

                    13.4. Integration of Laser Cleaning in a Transformation Process

                           13.4.1. Surface Pre-treatment: PROTAL?Process

                           13.4.2. Surface Preparation for Adhesion

                    13.5. Summary and Outlook

Index

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上