新书报道
当前位置: 首页 >> 电子电气计算机信息科学 >> 正文
Quantum computing devices : principles, designs, and analysis(量子计算元件:原理、设计与分析)
发布日期:2007-05-23  浏览

[内容简介]
One of the first books to thoroughly discuss the most promising devices for the future, Quantum Computing Devices: Principles, Designs, and Analysis explores contemporary and important aspects of quantum computation, particularly focusing on quantum elecctronic devices as quantum gates. It presents the analysis, design, and modeling of the major types of quantum computing devices: ion traps, cavity quantum electrodynamics (QED), linear optics, quantum dots, nuclear magnetic resonance (NMR), superconduct

Customer Reviews
Average Customer Review:
Write an online review and share your thoughts with other customers.

 
1 of 4 people found the following review helpful:
Today's State of the Art, November 17, 2006
By  John Matlock "Gunny" (Winnemucca, NV) - See all my reviews
(REAL NAME)   

Still in only the most advanced laboratories the future of computing seems to lie in new technologies that will replace the current type of semi-conductors. These technologies, lumped together under the term Quantum Devices. For the first time, the leading reserchers from around the world have gotten together to produce a book containing all of the promising areas that are being worked on, summarizing the work up to date, and giving some indication of the direction of future research.

Up until now the ever increasing speed of computers has been following Moore's law which states that the computing power of a CPU will double every 1.5 years at half the price. But in about nine more doublings there is a brick wall, the devices built into the chip will be one atom wide and you can't get any smaller than that with semi-conductors.

The basic concepts of quantum computing go back to the 80's. But the actual construction of devices that could perform the basic tasks such as quantum logic gates has proven more difficult, There are several schemes that have shown promise, but each has stumbled over roadblocks and difficulties. In turn each has provided spin offs into both computing and other areas as well.

Here in one book is the story of the state of the art.

[Table Of Contents]
Preface
         1 Foundations of Quantum Informatics: Spins, the EPR Problem, and Landauer's Principle
         1.1 Spins: The Stern
?erlach experiment and spin filter
         1.2 EPR and Bell's inequalities
         1.2.1 The EPR problem
         1.2.2 Resolving the EPR conundrum
         1.2.3 Bell's inequality
         1.3 The Landauer principle
         2 Quantum Computation and Quantum Systems
         2.1 Introduction: Turing machines and binary logic gates
         2.2 Quantum mechanical systems; basics of atoms and molecules
         2.2.1 Quantum probability
         2.2.2 Basics of atoms and molecules
         2.3 Hilbert spaces
         2.4 Complex finite dimensional Hilbert spaces and tensor products
         2.5 Quantum Turing machines
         2.6 Universality of elementary quantum gates; quantum circuits
         2.7 Quantum algorithms
         2.7.1 The Deutsch
?ozsa problem
         2.7.2 The Bernstein
?azirani problem
         2.7.3 Simon's problem
         2.7.4 Grover's quantum search algorithm
         2.7.5 Shor's factorization algorithm
         2.8 Quantum adder and multiplier
         2.9 Quantum error correction codes
        2.10 Lasers: a heuristic introduction
         2.11 Quantum computing devices and requirements
         3 Two-Level Atoms and Cavity QED
         3.1 Two-level atoms
         3.1.1 Atom
?ight interaction
         3.1.2 Reduction to a 2-level atom
         3.1.3 Single atom qubit rotation
         3.1.4 Two-level atom hardware
         3.2 Quantization of the electromagnetic field
         3.2.1 Normal mode expansion
         3.2.2 Field mode quantization; the harmonic oscillator
         3.2.3 Energy spectrum and stationary states
         3.3 Cavity QED
         3.3.1 A brief historical account of cavity QED
         3.3.2 Cavity hardware
         3.4 Cavity QED for the quantum phase gate
         3.4.1 Atom-cavity Hamiltonian
         3.4.2 Large detuning limit
         3.4.3 Two-qubit operation
         3.4.4 Cavity QED based quantum phase gate: another variant
         3.4.5 Atom-cavity hardware
         3.5 Quantum eraser
         3.6 Quantum disentanglement eraser
         4 Imperfect Quantum Operations
         4.1 Fidelity
         4.2 Density matrices
         4.3 Time evolution of density matrices
         4.3.1 The von Neumann equation
         4.3.2 Quantum operations
         4.3.3 The Kraus representation theorem
         4.3.4 Quantum Markov processes
         4.3.5 Non-Markovian environments
         4.4 Examples of master equations
         4.4.1 Leaky cavity
         4.4.2 Unstable 2-level system
         4.4.3 Dephasing
         4.5 Fidelity calculations
         4.5.1 Fluctuating gate parameters
         4.5.2 Spontaneous decay
         5 Quantum Computation Using Cold, Confined Atomic Ions
         5.1 Introduction
         5.2 Ion confinement, cooling, and condensation
         5.2.1 Confinement: several types of ion traps
         5.2.2 Ion cooling and condensation
         5.3 Ion qubits
         5.4 Summary of ion preparation
         5.5 Coherence
         5.5.1 Coherence of the motional qubit
         5.5.2 Coherence of the internal qubit
         5.5.3 Coherence in logic operations
         5.5.4 Studies of decoherence through coupling to engineered reservoirs
         5.5.5 Summary of ion coherence
         5.6 Quantum gates
         5.6.1 General considerations
         5.6.2 Cirac
?oller CNOT gate
         5.6.3 Wave packet or Debye
?aller CNOT gate
         5.6.4 S
?ensen??mer gate
         5.6.5 Geometrical phase gate
         5.6.6 Summary of quantum gates
         5.7 A vision of a large scale confined-ion quantum computer
         5.8 Trap architecture and performance
         5.9 Teleportation of coherent information
         5.10 Experimental DFS logic gates
         5.11 Quantum error correction by ion traps
         5.12 Summary of ion quantum computation
         5.12.1 Assessment
         5.12.2 Qubits
         5.12.3 Coherence
         5.12.4 Gates
         5.12.5 Computation
         5.12.6 Summary
         5.12.7 Outlook
         6 Quantum Logic Using Cold, Confined Atoms
         6.1 Introduction
         6.2 Preparation and detection
         6.3 Atom interactions with external fields
         6.3.1 Electric interaction
         6.3.2 Magnetic interaction
         6.3.3 Cold, controlled atom
?tom interactions
         6.4 Atom trapping
         6.4.1 Optical lattices
         6.4.2 Focused laser traps
         6.4.3 Static magnetic traps
         6.5 Qubits and gates
         6.5.1 Single qubit gates based on internal states
         6.5.2 Single qubit gates based on external states
         6.6 Controlled 2-qubit gates
         6.6.1 Cold, controlled collisions in an optical lattice
         6.6.2 Molecular interactions in an optical lattice
         6.6.3 Cold atom collisions in state-dependent potentials
         6.6.4 Quantum gates based on interactions between Ryd-berg states
         6.6.5 Quantum gates for qubits implemented in motional states
         6.6.6 Quantum phase gate on an atom chip
         6.7 Coherence properties of atom gates
         6.8 Recapitulation: atomic data tables for atoms and ions
         6.8.1 Ions
         6.8.2 Atoms
         6.9 Assessment
         7 Quantum Dots Quantum Computing Gates
         7.1 Introduction
         7.1.1 QD properties and fabrication: from quantum wells, wires to quantum dots
         7.1.2 QD-based single-electron devices and single-photon sources
         7.1.3 A simple quantum dot for quantum computing
         7.1.4 Spintronics
         7.1.5 Three major designs of QD-based quantum gates
         7.1.6 Universality of 1-bit and 2-bit gates in quantum computing
         7.2 Electrons in quantum dots microcavity
         7.2.1 Resonance, 1-bit and CNOT gates
         7.2.2 Decoherence and measurement
         7.3 Coupled electron spins in an array of quantum dots
         7.3.1 Electron spin
         7.3.2 The design due to D. Loss and D. DiVincenzo
         7.3.3 Model of two identical laterally coupled quantum dots
         7.3.4 More details of the QD arrangements: laterally coupled and vertically coupled arrays
         7.3.5 Decoherence and measurement
         7.3.6 New advances
         7.4 Biexciton in a single quantum dot
         7.4.1 Derivation of the unitary rotation matrix and the conditional rotation gate
         7.4.2 Decoherence and measurement
         7.4.3 Proposals for coupling of two or more biexciton QD
         7.5 Conclusions
         8 Linear Optics Computers
         8.1 Classical electrodynamics
?lassical computers
         8.1.1 Light beam manipulation with four degrees of freedom
         8.1.2 Optical circuits and examples
         8.1.3 Complexity issues of LOCC and alternatives
         8.2 Quantum electrodynamics
?uantum computers
         8.2.1 Quantum optical states
         8.2.2 Quantum operations and gates
         8.2.3 The approach of Knill, Laflamme and Milburn
         8.2.4 Quantum teleportation
         8.2.5 Application of quantum teleportation to LOQC
         8.3 Summary and outlook
         9 Superconducting Quantum Computing Devices
         9.1 Introduction
         9.2 Superconductivity
         9.3 More on Cooper pairs and Josephson junctions
         9.4 Superconducting circuits: classical
         9.4.1 Current-biased JJ
         9.4.2 Single Cooper-pair box (SCB)
         9.4.3 rf- or ac-SQUID
         9.4.4 dc-SQUID
         9.5 Superconducting circuits: quantum
         9.6 Quantum gates
         9.6.1 One qubit operation: charge-qubit
         9.6.2 Flux-qubit, charge-flux qubit and phase qubit
         9.6.3 Two-qubit operations
         9.7 Measurement of charge qubit
10 NMR Quantum Computing
         10.1 Nuclear magnetic resonance
         10.1.1 Introduction
         10.1.2 More about the Hamiltonian of NMR
         10.1.3 Organization of the chapter
         10.2 Basic technology used in quantum computation with NMR
         10.2.1 Realization of a qubit
         10.2.2 Construction of quantum gates
         10.2.3 Initialization
         10.2.4 Measurement
         10.3 Solid state NMR
         10.4 Shor's algorithm and its experimental realization
         10.4.1 Shor's algorithm ("hardwired" NMR experiment)
         10.4.2 Circuit design for Shor's algorithm
         10.4.3 Experimental result
         10.5 Quantum algorithm for lattice-gas systems
         10.5.1 Quantum algorithm for a lattice-gas model
         10.5.2 Physical realization and result
         10.6 Conclusion
Appendices
         A EPR, "locality" and "reality": the Bell inequalities ?la Wigner
         B The Fock-Darwin States
         C Evaluation of the exchange energy for laterally coupled quantum dots
         D Transformation of quantum states: SU(2) and SO(3)
         E The Homomorphism from SU(2) to SO(3)
Index
Authors

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上