[内容简介]
Key features include:
- Self-assessment questions and exercises
- Chapters start with essential principles, then go on to address more advanced topics
- More than 1300 references to direct the reader to key literature and further reading
- Highly illustrated with 450 figures, including chemical structures and reactions, functioning principles, constructive details and response characteristics
Chemical sensors are self-contained analytical devices that provide real-time information on chemical composition. A chemical sensor integrates two distinct functions: recognition and transduction. Such devices are widely used for a variety of applications, including clinical analysis, environment monitoring and monitoring of industrial processes. This text provides an up-to-date survey of chemical sensor science and technology, with a good balance between classical aspects and contemporary trends. Topics covered include:
- Structure and properties of recognition materials and reagents, including synthetic, biological and biomimetic materials, microorganisms and whole-cells
- Physicochemical basis of various transduction methods (electrical, thermal, electrochemical, optical, mechanical and acoustic wave-based)
- Auxiliary materials used e.g. synthetic and natural polymers, inorganic materials, semiconductors, carbon and metallic materials
- properties and applications of advanced materials (particularly nanomaterials) in the production of chemical sensors and biosensors
- Advanced manufacturing methods
- Sensors obtained by combining particular transduction and recognition methods
- Mathematical modeling of chemical sensor processes
Suitable as a textbook for graduate and final year undergraduate students, and also for researchers in chemistry, biology, physics, physiology, pharmacology and electronic engineering, this book is valuable to anyone interested in the field of chemical sensors and biosensors.
[目录]
Preface xix
Acknowledgements xxi
List of Symbols xxiii
List of Acronyms xxxi
1 What are Chemical Sensors? 1
1.1 Chemical Sensors: Definition and Components 1
1.2 Recognition Methods 2
1.2.1 General Aspects 2
1.2.2 Ion Recognition 3
1.2.3 Recognition by Affinity Interactions 3
1.2.4 Recognition by Nucleic Acids 3
1.2.5 Recognition by Enzymes 4
1.2.6 Recognition by Cells and Tissues of Biological Origin 4
1.2.7 Gas and Vapor Sorption 4
1.3 Transduction Methods 4
1.3.1 General Aspects 4
1.3.2 Thermometric Transduction 5
1.3.3 Transduction Based on Mechanical Effects 5
1.3.4 Resistive and Capacitive Transduction 5
1.3.5 Electrochemical Transduction 5
1.3.6 Optical Transduction 6
1.4 Sensor Configuration and Fabrication 6
1.5 Sensor Calibration 7
1.6 Sensor Figures of Merit 8
1.6.1 Reliability of the Measurement 9
1.6.2 Selectivity and Specificity 10
1.6.3 Detection and Quantification Capabilities 10
1.6.4 Response Time 11
1.7 Sensor Arrays 11
1.7.1 Quantitative Analysis by Cross-Sensitive Sensor Arrays 11
1.7.2 Qualitative Analysis by Cross-Sensitive Sensor Arrays 12
1.7.3 Artificial Neural Network Applications in the Artificial Nose/Tongue 13
1.7.4 Outlook 14
1.8 Sensors in Flow Analysis Systems 14
1.9 Applications of Chemical Sensors 14
1.9.1 Environmental Applications of Chemical Sensors 15
1.9.2 Healthcare Applications of Chemical Sensors 15
1.9.3 Application of Chemical Sensors in the Food Industry, Agriculture and Biotechnology 16
1.9.4 Chemical Sensors in Defense Applications 16
1.10 Literature on Chemical Sensors and Biosensors 17
1.11 Organization of the Text 17
References 19
2 Protein Structure and Properties 21
2.1 Amino Acids 21
2.2 Chemical Structure of Proteins 21
2.3 Conformation of Protein Macromolecules 22
2.4 Noncovalent Chemical Bonds in Protein Molecules 24
2.5 Recognition Processes Involving Proteins 25
2.6 Outlook 26
References 27
3 Enzymes and Enzymatic Sensors 28
3.1 General 28
3.2 Enzyme Nomenclature and Classification 28
3.3 Enzyme Components and Cofactors 30
3.4 Some Enzymes with Relevance to Biosensors 32
3.4.1 Oxidases 32
3.4.2 Dehydrogenases 33
3.4.3 Hydrolases 34
3.4.4 Lyases 35
3.4.5 Outlook 35
3.5 Transduction Methods in Enzymatic Biosensors 36
3.5.1 Transduction Methods 36
3.5.2 Multienzyme Sensors 37
3.6 Kinetics of Enzyme Reactions 38
3.6.1 The Michaelis–Menten Mechanism 38
3.6.2 Other Mechanisms 40
3.6.3 Expressing the Enzyme Activity 41
3.6.4 pH Effect on Enzyme Reactions 42
3.6.5 Temperature Effect on Enzyme Reactions 43
3.6.6 Outlook 43
3.7 Enzyme Inhibition 44
3.7.1 Reversible Inhibition 44
3.7.2 Irreversible Inhibition 46
3.7.3 Enzymatic Sensors for Inhibitors: Design and Operation 46
3.7.4 Applications of Enzyme-Inhibition Sensors 47
3.8 Concluding Remarks 48
References 49
4 Mathematical Modeling of Enzymatic Sensors 50
4.1 Introduction 50
4.2 The Enzymatic Sensor Under External Diffusion Conditions 50
4.2.1 The Physical Model 50
4.2.2 The Mathematical Model 51
4.2.3 The Zero-Order Kinetics Case 52
4.2.4 The First-Order Kinetics Case 52
4.2.5 The Dynamic Range and the Limit of Detection Under External Diffusion Conditions 54
4.3 The Enzymatic Sensor Under Internal Diffusion Control 55
4.3.1 The Steady-State Response 55
4.3.2 The Transient Regime and the Response Time Under Internal Diffusion Conditions 58
4.4 The General Case 60
4.4.1 The Model 60
4.4.2 Effect of the Biot Number 61
4.4.3 Effect of Partition Constants and Diffusion Coefficients 63
4.4.4 Experimental Tests for the Kinetic Regime of an Enzymatic Sensor 63
4.5 Outlook 64
References 64
5 Materials and Methods in Chemical-Sensor Manufacturing 66
5.1 Introduction 66
5.2 Noncovalent Immobilization at Solid Surfaces 66
5.3 Covalent Conjugation 67
5.3.1 Zero-Length Crosslinkers 68
5.3.2 Bifunctional Crosslinkers 69
5.3.3 Immobilization by Protein Crosslinking 69
5.4 Supports and Support Modification 70
5.4.1 General Aspects 70
5.4.2 Natural Polymers 71
5.4.3 Synthetic Polymers 72
5.4.4 Coupling to Active Polymers 72
5.4.5 Coupling to Inactive Polymers 72
5.4.6 Inorganic Supports 73
5.4.7 Carbon Material Supports 74
5.4.8 Metal Supports 75
5.4.9 Semiconductor Supports 76
5.5 Affinity Reactions 77
5.6 Thin Molecular Layers 78
5.6.1 Self-Assembly of Amphiphilic Compounds 78
5.6.2 Bilayer Lipid Membranes 79
5.6.3 Alternate Layer-by-Layer Assembly 80
5.7 Sol-Gel Chemistry Methods 81
5.8 Hydrogels 83
5.8.1 Physically Crosslinked Hydrogels 84
5.8.2 Chemically Crosslinked Hydrogels 84
5.8.3 Redox Hydrogels 84
5.8.4 Responsive Hydrogels 84
5.9 Conducting Polymers 86
5.10 Encapsulation 88
5.11 Entrapment in Mesoporous Materials 89
5.12 Polymer Membranes 90
5.12.1 Deposition of Polymers onto Solid Surfaces 90
5.12.2 Perm-Selective Membranes 91
5.13 Microfabrication Methods in Chemical-Sensor Technology 92
5.13.1 Spot Arraying 92
5.13.2 Thick-Film Technology 92
5.13.3 Thin-Film Techniques 94
5.13.4 Soft Lithography 95
5.13.5 Microcontact Printing of Biocompounds 95
5.14 Concluding Remarks 97
References 97
6 Affinity-Based Recognition 101
6.1 General Principles 101
6.2 Immunosensors 101
6.2.1 Antibodies: Structure and Function 101
6.2.2 Antibody–Antigen Affinity and Avidity 103
6.2.3 Analytical Applications 103
6.2.4 Label-Free Transduction Methods in Immunosensors 104
6.2.5 Label-Based Transduction Methods in Immunosensors 104
6.2.6 Enzyme Labels in Immunoassay 105
6.3 Immobilization Methods in Immunosensors 106
6.4 Immunoassay Formats 106
6.5 Protein and Peptide Microarrays 109
6.6 Biological Receptors 110
6.7 Artificial Receptors 111
6.7.1 Cyclodextrins and Host–Guest Chemistry 111
6.7.2 Calixarenes 113
6.7.3 Molecularly Imprinted Polymers (MIPs) 113
6.8 Outlook 115
References 115
7 Nucleic Acids in Chemical Sensors 118
7.1 Nucleic Acid Structure and Properties 118
7.2 Nucleic Acid Analogs 121
7.3 Nucleic Acids as Receptors in Recognition Processes 122
7.3.1 Hybridization: Polynucleotide Recognition 122
7.3.2 Recognition of Non-Nucleotide Compounds 123
7.3.3 Recognition by Aptamers 124
7.4 Immobilization of Nucleic Acids 126
7.4.1 Adsorption 126
7.4.2 Immobilization by Self-Assembly 127
7.4.3 Immobilization by Polymerization 127
7.4.4 Covalent Immobilization on Functionalized Surfaces 128
7.4.5 Coupling by Affinity Reactions 128
7.4.6 Polynucleotides–Nanoparticles Hybrids 129
7.5 Transduction Methods in Nucleic Acids Sensors 129
7.5.1 Label-Free Transduction Methods 129
7.5.2 Label-Based Transduction 129
7.5.3 DNA Amplification 130
7.6 DNA Microarrays 131
7.7 Outlook 132
References 133
8 Nanomaterial Applications in Chemical Sensors 135
8.1 Generals 135
8.2 Metallic Nanomaterials 136
8.2.1 Synthesis of Metal Nanoparticles 136
8.2.2 Functionalization of Gold Nanoparticles 137
8.2.3 Applications of Metal Nanoparticles in Chemical Sensors 138
8.3 Carbon Nanomaterials 138
8.3.1 Structure of CNTs 139
8.3.2 Synthesis of CNTs 140
8.3.3 Chemical Reactivity and Functionalization 140
8.3.4 CNTApplications in Chemical Sensors 142
8.3.5 Carbon Nanofibers (CNFs) 142
8.4 Polymer and Inorganic Nanofibers 144
8.5 Magnetic Micro- and Nanoparticles 145
8.5.1 Magnetism and Magnetic Materials 145
8.5.2 Magnetic Nanoparticles 146
8.5.3 Magnetic Biosensors and Biochips 146
8.5.4 Magnetic Nanoparticles as Auxiliary Components in Biosensors 148
8.5.5 Outlook 148
8.6 Semiconductor Nanomaterials 149
8.6.1 Synthesis and Functionalization of Quantum Dots 149
8.6.2 Applications of Quantum Dots 151
8.7 Silica Nanoparticles 151
8.7.1 Synthesis, Properties, and Applications 151
8.8 Dendrimers 152
8.8.1 Properties and Applications 152
8.9 Summary 153
References 153
9 Thermochemical Sensors 157
9.1 Temperature Transducers 157
9.1.1 Resistive Temperature Transducers 157
9.1.2 Thermopiles 157
9.2 Enzymatic Thermal Sensors 158
9.2.1 Principles of Thermal Transduction in Enzymatic Sensors 158
9.2.2 Thermistor-Based Enzymatic Sensors 159
9.2.3 Thermopile-Based Enzymatic Sensors 160
9.2.4 Multienzyme Thermal Sensors 160
9.2.5 Outlook 161
9.3 Thermocatalytic Sensors for Combustible Gases 162
9.3.1 Structure and Functioning Principles 162
References 163
10 Potentiometric Sensors 165
10.1 Introduction 165
10.2 The Galvanic Cell at Equilibrium 165
10.2.1 Thermodynamics of Electrolyte Solutions 166
10.2.2 Thermodynamics of the Galvanic Cell 167
x Contents
10.3 Ion Distribution at the Interface of Two Electrolyte Solutions 170
10.3.1 Charge Distribution at the Junction of Two Electrolyte Solutions.
The Diffusion Potential 170
10.3.2 Ion Distribution at an Aqueous/Semipermeable Membrane Interface 172
10.4 Potentiometric Ion Sensors – General 173
10.4.1 Sensor Configuration and the Response Function 173
10.4.2 Selectivity of Potentiometric Ion Sensors 175
10.4.3 The Response Range of Potentiometric Ion Sensors 177
10.4.4 Interferences by Chemical Reactions Occurring in the Sample 177
10.4.5 The Response Time of Potentiometric Ion Sensors 177
10.4.6 Outlook 178
10.5 Sparingly Soluble Solid Salts as Membrane Materials 178
10.5.1 Membrane Composition 178
10.5.2 Response Function and Selectivity 179
10.6 Glass Membrane Ion Sensors 181
10.6.1 Membrane Structure and Properties 181
10.6.2 Response Function and Selectivity 182
10.6.3 Chalcogenide Glass Membranes 183
10.7 Ion Sensors Based on Molecular Receptors. General Aspects 184
10.8 Liquid Ion Exchangers as Ion Receptors 185
10.8.1 Ion Recognition by Liquid Ion Exchangers 185
10.8.2 Charged Receptor Membranes 185
10.8.3 Response Function and Selectivity 186
10.8.4 Outlook 187
10.9 Neutral Ion Receptors (Ionophores) 187
10.9.1 General Principles 187
10.9.2 Chemistry of Ion Recognition by Neutral Receptors 188
10.9.3 Effect of Bonding Multiplicity, Steric, and Conformational Factors 189
10.9.4 Neutral Receptor Ion-Selective Membranes: Composition, Selectivity and
Response Function 190
10.9.5 Neutral Noncyclic Ion Receptors 192
10.9.6 Macrocyclic Cation Receptors 193
10.9.7 Macrocyclic Anion Receptors 194
10.9.8 Neutral Receptors for Organic Ions 194
10.9.9 Porphyrins and Phthalocyanines as Anion Receptors 195
10.9.10 Outlook 196
10.10 Molecularly Imprinted Polymers as Ion-Sensing Materials 197
10.11 Conducting Polymers as Ion-Sensing Materials 198
10.12 Solid Contact Potentiometric Ion Sensors 198
10.13 Miniaturization of Potentiometric Ion Sensors 199
10.14 Analysis with Potentiometric Ion Sensors 200
10.15 Recent Advances in Potentiometric Ion Sensors 201
10.16 Potentiometric Gas Sensors 203
10.17 Solid Electrolyte Potentiometric Gas Sensors 204
10.17.1 General Principles 204
10.17.2 Solid Electrolyte Potentiometric Oxygen Sensors 205
10.17.3 Applications of Potentiometric Oxygen Sensors 206
10.17.4 Types of Solid Electrolyte Potentiometric Gas Sensors 207
10.17.5 Mixed Potential Potentiometric Gas Sensors 208
10.17.6 Outlook 209
10.18 Potentiometric Biocatalytic Sensors 210
10.19 Potentiometric Affinity Sensors 211
10.20 Summary 212
References 213
11 Chemical Sensors Based on Semiconductor Electronic Devices 217
11.1 Electronic Semiconductor Devices 217
11.1.1 Semiconductor Materials 217
11.1.2 Band Theory of Semiconductors 218
11.1.3 Metal-Insulator-Semiconductor (MIS) Capacitors 219
11.1.4 Metal-Insulator-Semiconductor Field Effect Transistors (MISFETs) 221
11.1.5 Outlook 224
11.2 FED Ion Sensors and Their Applications 224
11.2.1 Electrolyte-Insulator-Semiconductor (EIS) Devices 224
11.2.2 FEDpH Sensors 226
11.2.3 pH ISFET-Based Gas Probes 228
11.2.4 Membrane-Covered ISFETs 229
11.2.5 Light-Addressable Potentiometric Sensors (LAPS) 230
11.2.6 Reference Electrodes for ISFET Sensors 231
11.2.7 Enzymatic FET Sensors (EnFETs) 232
11.2.8 Outlook 232
11.3 FED Gas Sensors 234
11.3.1 FED Hydrogen Sensors 234
11.3.2 Metal Gate FED Sensors for Other Gases 235
11.3.3 Organic Semiconductors as Gas-Sensing Materials 236
11.3.4 Organic Semiconductors FED Gas Sensors 237
11.3.5 Response Mechanism of FED Gas Sensors 238
11.3.6 Outlook 240
11.4 Schottky-Diode-Based Gas Sensors 240
11.5 Carbon-Nanotube-Based Field-Effect Transistors 242
11.6 Concluding Remarks 243
References 244
12 Resistive Gas Sensors (Chemiresistors) 246
12.1 Semiconductor Metal Oxide Gas Sensors 246
12.1.1 Introduction 246
12.1.2 Gas-Response Mechanism 246
12.1.3 Response to Humidity 247
12.1.4 Sensor Configuration 248
12.1.5 Synthesis and Deposition of Metal Oxides 249
12.1.6 Fabrication of Metal-Oxide Chemiresistors 249
12.1.7 Selectivity and Sensitivity 250
12.1.8 Outlook 251
12.2 Organic-Material-Based Chemiresistors 252
12.3 Nanomaterial Applications in Resistive Gas Sensors 253
12.4 Resistive Gas Sensor Arrays 254
12.5 Summary 255
References 256
13 Dynamic Electrochemistry Transduction Methods 258
13.1 Introduction 258
13.2 Electrochemical Cells in Amperometric Analysis 258
13.3 The Electrolytic Current and its Analytical Significance 260
13.3.1 Current–Concentration Relationships 260
13.3.2 The Current–Potential Curve: Selecting the Working Potential 262
13.3.3 Irreversible Electrochemical Reactions 264
13.3.4 Sign Convention 265
13.3.5 Geometry of the Diffusion Process 265
13.3.6 Outlook 265
13.4 Membrane-Covered Electrodes 266
13.5 Non-Faradaic Processes 267
13.5.1 Origin of Non-Faradaic Currents 267
13.5.2 The Electrical Double Layer at the Electrode/Solution Interface 268
13.5.3 The Charging Current 269
13.5.4 Applications of Capacitance Measurement in Chemical Sensors 270
13.6 Kinetics of Electrochemical Reactions 270
13.6.1 The Reaction Rate of an Electrochemical Reaction 270
13.6.2 Current–Potential Relationships 272
13.6.3 Mass-Transfer Effect on the Kinetics of Electrochemical Reactions 273
13.6.4 Equilibrium Conditions 274
13.6.5 The Electrochemical Reaction in the Absence of Mass-Transfer Restrictions 275
13.6.6 Polarizable and Nonpolarizable Electrodes 276
13.7 Achieving Steady-State Conditions in Electrochemical Measurements 277
13.7.1 Outlook 278
13.8 Electrochemical Methods 280
13.8.1 Steady-State Method 280
13.8.2 Constant-Potential Chronoamperometry 280
13.8.3 Polarography 281
13.8.4 Linear-Scan Voltammetry(LSV) and Cyclic Voltammetry (CV) 282
13.8.5 Pulse Voltammetry 285
13.8.6 Square-Wave Voltammetry (SWV) 286
13.8.7 Alternating-Current Voltammetry 287
13.8.8 Chronopotentiometric Methods 288
13.8.9 Electrochemistry at Ultramicroelectrodes 289
13.8.10 Current Amplification by Reactant Recycling 291
13.8.11 Scanning Electrochemical Microscopy 292
13.8.12 Outlook 293
13.9 Electrode Materials 294
13.9.1 Carbon Electrodes 295
13.9.2 Noble-Metal Electrodes 296
13.9.3 Metal-Oxide Films 297
13.9.4 Electrode Fabrication 297
13.9.5 Carbon Nanomaterial Applications in Electrochemistry 298
13.9.6 Outlook 298
13.10 Catalysis in Electrochemical Reactions 299
13.10.1 Homogeneous Redox Catalysis 299
13.10.2 Homogeneous Mediation in Electrochemical Enzymatic Reactions 300
13.10.3 Catalysis by Immobilized Enzymes 301
13.10.4 Heterogeneous Redox Catalysis 302
13.10.5 Surface Activation of Electrochemical Reactions 304
13.10.6 Outlook 304
13.11 Amperometric Gas Sensors 306
13.11.1 The Clark Oxygen Sensor 306
13.11.2 Nitric Oxide Sensors 307
13.11.3 Other Types of Amperometric Gas Sensors 308
13.11.4 Galvanic Cell-Type Gas Sensors 309
13.11.5 Solid Electrolyte Amperometric Gas Sensors 309
References 310
14 Amperometric Enzyme Sensors 314
14.1 First-Generation Amperometric Enzyme Sensors 314
14.2 Second-Generation Amperometric Enzyme Sensors 316
14.2.1 Principles 316
14.2.2 Inorganic Mediators 317
14.2.3 Organic Mediators 317
14.2.4 Ferrocene Derivatives as Mediators 319
14.2.5 Electron-Transfer Mediation by Redox Polymers 320
14.2.6 Sensing by Organized Molecular Multilayer Structures 321
14.3 The Mediator as Analyte 322
14.4 Conducting Polymers in Amperometric Enzyme Sensors 323
14.5 Direct Electron Transfer: 3rd-Generation Amperometric Enzyme Sensors 324
14.5.1 Conducting Organic Salt Electrodes 324
14.5.2 Direct Electron Transfer with FAD-Heme Enzymes 325
14.5.3 Achieving Direct Electron Transfer by Means of Nanomaterials 326
14.6 NAD/NADH+ as Mediator in Biosensors 327
14.7 Summary 328
References 328
15 Mathematical Modeling of Mediated Amperometric Enzyme Sensors 332
15.1 External Diffusion Conditions 332
15.1.1 Model Formulation 332
15.1.2 Sensor Response: Limiting Cases 334
15.1.3 The Dynamic Range and the Limit of Detection 336
15.1.4 Other Theoretical Models 338
15.1.5 Outlook 338
15.2 Internal Diffusion Conditions 339
15.2.1 Model Formulation 339
15.2.2 Dimensionless Parameters and Variables 340
15.2.3 Limiting Conditions 342
15.2.4 Solving the Differential Equations. The Case Diagram 343
15.2.5 Kinetic Currents 343
15.2.6 Diffusion Currents 343
15.2.7 Outlook 345
References 345
16 Electrochemical Affinity and Nucleic Acid Sensors 347
16.1 Amperometric Affinity Sensors 347
16.1.1 Redox Labels in Amperometric Immunosensors 347
16.1.2 Enzyme-Linked Amperometric Immunosensors 347
16.1.3 Separationless Amperometric Immunosensors 349
16.1.4 Nanomaterials Applications in Amperometric Immunosensors 350
16.1.5 Imprinted Polymers in Amperometric Affinity Sensors 351
16.1.6 Outlook 353
16.2 Electrochemical Nucleic Acid-Based Sensors 354
16.2.1 Electrochemical Reactions of Nucleobases 354
16.2.2 Amperometric Nucleic Acid Sensors Based on Self-Indicating Hybridization 355
16.2.3 Intercalating Redox Indicators 357
16.2.4 Covalently Bound Redox Indicators in Sandwich Assays 357
16.2.5 Covalently Bound Redox Indicators in Spatially Resolved Transduction 359
16.2.6 Enzyme Labels in Amperometric Nucleic Acid Sensors 359
16.2.7 Electrochemical DNA Arrays 361
16.2.8 Nucleic Acids as Recognition Materials for Non-Nucleotide Compounds 361
16.2.9 Aptamer Amperometric Sensors 361
16.2.10 Outlook 363
References 364
17 Electrical-Impedance-Based Sensors 367
17.1 Electrical Impedance: Terms and Definitions 367
17.2 Electrochemical Impedance Spectrometry 369
17.2.1 Basic Concepts and Definitions 369
17.2.2 Non-Faradaic Processes 370
17.2.3 Faradaic Processes 372
17.2.4 Probing the Electrode Surface by Electrochemical Impedance Spectrometry 373
17.3 Electrochemical Impedance Affinity Sensors 375
17.3.1 Electrochemical Impedance Transduction in Affinity Sensors 375
17.3.2 Configuration of Impedimetric Biosensors 376
17.3.3 Capacitive Biosensors 377
17.3.4 Signal Amplification 379
17.3.5 Synthetic Receptor-Based Impedimetric Sensors 379
17.3.6 Applications of Impedimetric Affinity Sensors 380
17.4 Biocatalytic Impedimetric Sensors 381
17.5 Outlook 382
17.6 Nucleic Acid Impedimetric Sensors 383
17.6.1 Non-Faradaic Impedimetric DNA Sensors 383
17.6.2 Faradaic Impedimetric DNA Sensors 384
17.6.3 Impedimetric Aptasensors 385
17.7 Conductometric Sensors 386
17.7.1 Conductivity of Electrolyte Solutions 386
17.7.2 Conductance Measurement 388
17.7.3 Conductometric Transducers 389
17.7.4 Conductometric Enzymatic Sensors 389
17.7.5 Conductometric Transduction by Chemoresistive Materials 391
17.7.6 Ion-Channel-Based Conductometric Sensors 394
17.7.7 Outlook 394
17.8 Impedimetric Sensors for Gases and Vapors 395
17.8.1 Humidity: Terms and Definitions 395
17.8.2 Resistive Humidity Sensors 396
17.8.3 Capacitive Humidity Sensors 397
17.8.4 Capacitive Gas Sensors 399
17.8.5 Integrated Impedimetric Gas Sensors and Sensor Arrays 399
17.8.6 Outlook 400
References 400
18 Optical Sensors – Fundamentals 404
18.1 Electromagnetic Radiation 404
18.2 Optical Waveguides in Chemical Sensors 405
18.2.1 Optical Fibers: Structure and Light Propagation 406
18.2.2 Passive Fiber Optic Sensor Platforms 407
18.2.3 Active Fiber Optic Sensor Platforms 407
18.2.4 Planar Waveguides 408
18.2.5 Capillary Waveguides 409
18.2.6 Outlook 409
18.3 Spectrochemical Transduction Methods 409
18.3.1 Light Absorption 409
18.3.2 Diffuse Reflectance Spectrometry 410
18.3.3 Luminescence 411
18.3.4 Fluorescence Spectrometry 412
18.3.5 Steady-State Fluorescence Measurements 413
18.3.6 Time-Resolved Fluorimetry 414
18.3.7 Fluorescence Quenching 416
18.3.8 Resonance Energy Transfer 417
18.3.9 Chemiluminescence and Bioluminescence 417
18.3.10 Electrochemically Generated Chemiluminescence 418
18.3.11 Raman Spectrometry 419
18.3.12 Outlook 420
18.4 Transduction Schemes in Spectrochemical Sensors 421
18.4.1 Direct Transduction 421
18.4.2 Indirect (Competitive-Binding) Transduction 423
18.4.3 Outlook 424
18.5 Fiber Optic Sensor Arrays 424
18.6 Label-Free Transduction in Optical Sensors 425
18.6.1 Surface Plasmons Resonance Spectrometry 425
18.6.2 Interferometric Transduction 426
18.6.3 The Resonant Mirror 428
18.6.4 Resonant Waveguide Grating 429
18.6.5 Outlook 429
18.7 Transduction by Photonic Devices 430
18.7.1 Optical Microresonators 430
18.7.2 Photonic Crystals 431
18.7.3 Outlook 433
References 433
19 Optical Sensors – Applications 435
19.1 Optical Sensors Based on Acid–Base Indicators 435
19.1.1 Optical pH Sensors 435
19.1.2 Optical Sensors for Acidic and Basic Gases 437
19.2 Optical Ion Sensors 438
19.2.1 Direct Optical Ion Sensors 438
19.2.2 Indirect Optical Ion Sensors 439
19.3 Optical Oxygen Sensors 440
19.4 Enzymatic Optical Sensors 442
19.4.1 Principles and Design 442
19.4.2 Optical Monitoring of Reactants or Products 442
19.4.3 Coenzyme-Based Optical Transduction 443
19.4.4 Outlook 443
19.5 Optical Affinity Sensors 444
19.5.1 Optical Immunosensors 444
19.5.2 Optical Sensors Based on Biological Receptors 445
19.5.3 Outlook 446
19.6 Optical DNA Sensors and Arrays 447
19.6.1 Fluorescence Transduction in Nucleic Acid Sensors 447
19.6.2 Fiber Optic Nucleic Acid Sensors 448
19.6.3 Fiber Optic Nucleic Acid Arrays 450
19.6.4 Optical DNA Microarrays 451
19.6.5 Outlook 451
References 452
20 Nanomaterial Applications in Optical Transduction 454
20.1 Semiconductor Nanocrystals (Quantum Dots) 454
20.1.1 Quantum Dots: Structure and Properties 454
20.1.2 Applications of Quantum Dots in Chemical Sensing 456
20.1.3 Outlook 461
20.2 Carbon Nanotubes as Optical Labels 462
20.2.1 Light Absorption and Emission by CNTs 462
20.2.2 Raman Scattering by CNTs 464
20.2.3 CNT Optical Sensors and Arrays 464
20.2.4 Outlook 466
20.3 Metal Nanoparticle in Optical Sensing 466
20.3.1 Optical Properties of Metal Nanoparticles 466
20.3.2 Optical Detection Based on Metal Nanoparticles 467
20.3.3 Metal Nanoparticles in Optical Sensing 468
20.4 Porous Silicon 470
20.5 Luminescent Lanthanide Compound Nanomaterials 471
20.6 Summary 471
References 471
21 Acoustic-Wave Sensors 473
21.1 The Piezoelectric Effect 473
21.2 The Thickness–Shear Mode Piezoelectric Resonator 474
21.2.1 The Quartz Crystal Microbalance 474
21.2.2 The Unperturbed Resonator 476
21.2.3 QCM Loading by a Rigid Overlayer. The Sauerbrey
Equation 477
21.2.4 The QCM in Contact with Liquids 478
21.2.5 The QCM in Contact with a newtonian Liquid 479
21.2.6 The QCM in Contact with a Viscoelastic Fluid 480
21.2.7 Modeling the Loaded TSM Resonator 480
21.2.8 The Quartz Crystal Microbalance with Dissipation
Monitoring (QCM-D) 485
21.2.9 Operation of QCM Sensors 486
21.2.10 Calibration of the QCM 487
21.2.11 Outlook 488
21.3 QCM Gas and Vapor Sensors 489
21.4 QCM Affinity Sensors 489
21.4.1 QCM Immunosensor 490
21.4.2 Amplification in QCM Immunosensors 491
21.4.3 Determination of Small Molecules Using Natural Receptors 492
21.4.4 QCM Sensors Based on Molecularly Imprinted Polymers 492
21.4.5 QCM Sensors Based on Small Synthetic Receptors 494
21.4.6 Outlook 494
21.5 QCM Nucleic Acid Sensors 495
21.5.1 Hybridization Sensors 495
21.5.2 Piezoelectric Aptasensors 496
21.5.3 Outlook 497
21.6 Surface-Launched Acoustic-Wave Sensors 497
21.6.1 Principles 497
21.6.2 The Surface Acoustic Wave 498
21.6.3 Plate-Mode SLAW Devices 498
21.6.4 SLAW Gas and Vapor Sensors 499
21.6.5 Liquid-Phase SLAW Sensing 501
21.6.6 Outlook 502
21.7 Summary 503
References 504
22 Microcantilever Sensors 507
22.1 Principles of Microcantilever Transduction 507
22.1.1 The Microcantilever 507
22.1.2 Static Deformation Transduction 508
22.1.3 Resonance-Mode Transduction 509
22.2 Measurement of Cantilever Deflection 510
22.2.1 Optical Measurement of Cantilever Deflection 510
22.2.2 Electrical Measurement of Cantilever Deflection 511
22.3 Functionalization of Microcantilevers 512
22.4 Microcantilever Gas and Vapor Sensors 513
22.5 Microcantilever Affinity Sensors 513
22.5.1 General Aspects 513
22.5.2 Microcantilever Protein Sensors 513
22.5.3 Microcantilever Pathogen Sensors 514
22.5.4 Microcantilever Affinity Sensors Based on Other Recognition Receptors 514
22.6 Enzyme Assay by Microcantilever Sensors 515
22.7 Microcantilever Nucleic Acid Sensors 515
22.8 Outlook 516
References 516
23 Chemical Sensors Based on Micro-Organisms, Living Cells and Tissues 518
23.1 Living Material Biosensors: General Principles 518
23.2 Sensing Strategies in Living-Material-Based Sensors 518
23.2.1 Biocatalytic Sensors 518
23.2.2 External-Stimuli-Based Biosensors 519
23.3 Immobilization of Living Cells and Micro-organisms 519
23.4 Electrochemical Microbial Biosensors 520
23.4.1 Amperometric Microbial Biosensors 520
23.4.2 Potentiometric Microbial Biosensors 522
23.4.3 Conductometric Microbial Sensors 523
23.4.4 Electrical Impedance Transduction 523
23.5 Optical Whole-Cell Sensors 524
23.5.1 Optical Respiratory Biosensors 524
23.5.2 External-Stimuli-Based Optical Sensors 525
23.5.3 Bioreporters 526
23.6 Improving the Selectivity of Micro-organism Biosensors 526
23.7 Conclusions 527
References 528
Index 531