[内容简介]
Materials Engineering for High Density Energy Storage provides first-hand knowledge about the design of safe and powerful batteries and the methods and approaches for enhancing the performance of next-generation batteries. The book explores how the innovative approaches currently employed, including thin films, nanoparticles and nanocomposites, are paving new ways to performance improvement. The topic's tremendous application potential will appeal to a broad audience, including materials scientists, physicists, electrochemists, libraries, and graduate students.
[目次]
Preface
List of Contributors
1 Introduction to Electrochemical Cells Thapanee Sarakonsri Sarakonsri, Thapanee 1
1.1 What are Batteries? 1
1.2 Quantities Characterizing Batteries 3
1.2.1 Voltage 4
1.2.2 Electrode Kinetics (Polarization and Cell Impedance) 7
1.2.2.1 Electrical Double Layer 7
1.2.2.2 Rate of Reaction 8
1.2.2.3 Electrodes Away from Equilibrium 8
1.2.2.4 The Tafel Equation 8
1.2.2.5 Example: Plotting a Tafel Curve for a Copper Electrode 9
1.2.2.6 Other Limiting Factors 11
1.2.2.7 Tafel Curves for a Battery 11
1.2.3 Capacity 13
1.2.4 Shelf-Life 14
1.2.5 Discharge Curve/Cycle Life 14
1.2.6 Energy Density 15
1.2.7 Specific Energy Density 15
1.2.8 Power Density 16
1.2.9 Service Life/Temperature Dependence 16
1.3 Primary and Secondary Batteries 17
1.4 Battery Market 19
1.5 Recycling and Safety Issues 20
References 25
2 Primary Batteries R. Vasant Kumar Kumar, R. Vasant 27
2.1 Introduction 27
2.2 The Early Batteries 27
2.3 The Zinc/Carbon Cell 31
2.3.1 The Leclanche Cell 31
2.3.2 The Gassner Cell 32
2.3.3 Current Zinc/Carbon Cell 33
2.3.3.1 Electrochemical Reactions 34
2.3.3.2 Components 35
2.3.4 Disadvantages 36
2.4 Alkaline Batteries 36
2.4.1 Electrochemical Reactions 38
2.4.2 Components 38
2.4.3 Disadvantages 39
2.5 Button Batteries 40
2.5.1 Mercury Oxide Battery 40
2.5.2 Zn/Ag2O Battery 41
2.5.3 Metal-Air Batteries 42
2.5.3.1 Zn/Air Battery 44
2.5.3.2 Aluminum/Air Batteries 45
2.6 Li Primary Batteries 46
2.6.1 Lithium/Thionyl Chloride Batteries 47
2.6.2 Lithium/Sulfur Dioxide Cells 48
2.7 Oxyride Batteries 49
2.8 Damage in Primary Batteries 50
2.9 Conclusions 52
References 52
3 A Review of Materials and Chemistry for Secondary Batteries Thapanee Sarakonsri Sarakonsri,
Thapanee 53
3.1 The Lead-Acid Battery 54
3.1.1 Electrochemical Reactions 56
3.1.2 Components 57
3.1.3 New Components 60
3.2 The Nickel-Cadmium Battery 63
3.2.1 Electrochemical Reactions 65
3.3 Nickel-Metal Hydride (Ni-MH) Batteries 66
Secondary Alkaline Batteries 66
3.4.1 Components 67
3.5 Secondary Lithium Batteries 68
3.5.1 Lithium-Ion Batteries 70
3.5.2 Li-Polymer Batteries 73
3.5.3 Evaluation of Li Battery Materials and Chemistry 74
3.6 Lithium-Sulfur Batteries 76
3.7 Conclusion 80
References 80
4 Current and Potential Applications of Secondary Li Batteries Stephen A. Hackney Hackney,
Stephen A. 81
4.1 Portable Electronic Devices 81
4.2 Hybrid and Electric Vehicles 82
4.3 Medical Applications 85
4.3.1 Heart Pacemakers 85
4.3.2 Neurological Pacemakers 86
4.4 Application of Secondary Li Ion Battery Systems in Vehicle Technology 87
4.4.1 Parallel Connection 91
4.4.2 Series Connections 93
4.4.3 Limitations and Safety Issues 97
References 100
5 Li-Ion Cathodes: Materials Engineering Through Chemistry Stephen A. Hackney Hackney,
Stephen A. 103
5.1 Energy Density and Thermodynamics 103
5.2 Materials Chemistry and Engineering of Voltage Plateau 111
5.3 Multitransition Metal Oxide Engineering for Capacity and Stability 119
5.4 Conclusion 126
References 126
6 Next-Generation Anodes for Secondary Li-Ion Batteries Katerina E. Aifantis Aifantis, Katerina
E. 129
6.1 Introduction 129
6.2 Chemical Attack by the Electrolyte 130
6.3 Mechanical Instabilities during Electrochemical Cycling 132
6.4 Nanostructured Anodes 135
6.5 Thin Film Anodes 136
6.5.1 Sn-Based Thin Film Anodes 136
6.5.2 Si-Based Thin Film Anodes 137
6.6 Nanofiber/Nanotube/Nanowire Anodes 142
6.6.1 Sn-Based Nanofiber/Nanowire Anodes 142
6.6.2 Si-Nanowire Anodes 143
6.7 Active/Less Active Nanostrutured Anodes 146
6.7.1 Sn-Based Active/Less Active Anodes 146
6.7.1.1 Sn-Sb Alloys 146
6.7.1.2 SnS2 Nanoplates 148
6.7.1.3 Sn-C Nanocomposites 149
6.7.2 Si-Based Active/Less Active Nanocomposites 151
6.7.2.1 Si-SiO2-C Composites 151
6.7.2.2 Si-C Nanocomposites 153
6.8 Other Anode Materials 157
6.8.1 Sb-Based Anodes 157
6.8.2 Al-Based Anodes 158
6.8.3 Bi-Based Anodes 160
6.9 Conclusions 162
References 162
7 Next-Generation Electrolytes for Li Batteries Seok Kim Kim, Seok 165
7.1 Introduction 165
7.2 Background 170
7.2.1 Li-Ion Liquid Electrolytes 170
7.2.2 Why polymer Electrolytes? 172
7.2.3 Metal Ion Salts for Polymer Electrolytes 173
7.3 Preparation and Characterization of Polymer Electrolytes 174
7.3.1 Preparation of Polymer Electrolytes 175
7.3.1.1 Molten-Salt-Containing Polymer Gel Electrolytes 175
7.3.1.2 Organic-Modified MMT-Containing Polymer Composite Electrolytes 175
7.3.1.3 Ion-Exchanged Li-MMT-Containing Polymer Composite Electrolytes 175
7.3.1.4 Mesoporous Silicate (MCM-41)-Containing Polymer Composite Electrolytes 176
7.3.2 Characterization of Molten-Salt-Containing Polymer Gel Electrolytes 176
7.3.2.1 Morphologies and Structural Properties 176
7.3.2.2 Thermal Properties 178
7.3.2.3 Electrochemical Properties 180
7.3.3 Characterization of Organic-Modified MMT-Containing Polymer Composite Electrolytes 185
7.3.3.1 Morphologies and Structural Properties 185
7.3.3.2 Thermal Properties 188
7.3.3.3 Electrochemical Properties 189
7.3.4 Ion-Exchanged Li-MMT-Containing Polymer Composite Electrolytes 191
7.3.4.1 Structural Properties 191
7.3.4.2 Thermal Properties 192
7.3.4.3 Electrochemical Properties 193
7.3.5 Mesoporous Silicate (MCM-41)-Containing Polymer Composite Electrolytes 197
7.3.5.1 Morphologies and Structural Properties 197
7.3.5.2 Thermal Properties 200
7.3.5.3 Electrochemical Properties 201
7.4 Conclusions 203
References 205
8 Mechanics of Materials for Li-Battery Systems Stephen A. Hackney Hackney, Stephen A. 209
8.1 Introduction 209
8.2 Mechanics Considerations During Battery Life 211
8.3 Modeling Elasticity and Fracture During Electrochemical Cycling 214
8.3.1 Fracture in a Bilayer Configuration 214
8.3.2 Elasticity and Fracture in an Axially Symmetric Configuration 216
8.3.3 Fracture and Damage Evolution for Thin Film Case 220
8.3.4 Fracture and Damage in Fiber-Like/Nanowire Electrodes 223
8.3.5 Spherical Active Sites 223
8.3.6 Stability Plots 226
8.3.7 Volume Fraction and Particle Size Considerations 227
8.3.7.1 Information from Stability Index 228
8.3.7.2 Griffith's Criterion 228
8.3.8 Critical Crack Length 230
8.3.9 Mechanical Stability of Sn/C Island Structure Anode 231
8.4 Multiscale Phenomena and Considerations in Modeling 235
8.4.1 Macroscale Modeling 236
8.5 Particle Models of Coupled Diffusion and Stress Generation 239
8.5.1 Li+ Transport During Extraction and Insertion from a Host 240
8.5.2 Electrochemical Reaction Kinetics 242
8.5.3 Stress Generation 243
8.5.4 Representative Results 243
8.6 Diffusional Processes During Cycling 248
8.6.1 Multiscale Electrochemical Interactions 248
8.6.2 Diffusion Stresses in Low Symmetry Composition Fields 252
8.7 Conclusions 254
References 254
Index 257