新书报道
当前位置: 首页 >> 电子电气计算机信息科学 >> 正文
Microwave imaging
发布日期:2010-07-08  浏览

【内容简介】
The active technique of microwave imaging has recently proven to provide excellent diagnostic capabilities in several areas. Offering comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging (including reconstruction procedures, imaging systems and apparatuses, and current applications), "Microwave Imaging" includes a review of the inverse scattering problem formulation written from an engineering perspective and notations. This comprehensive text provides scientists and engineers with an introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches.
【目次】
1 Introduction.
2 Electromagnetic Scattering.
2.1 Maxwell’s Equations.
2.2 Interface Conditions.
2.3 Constitutive Equations.
2.4 Wave Equations and Their Solutions.
2.5 Volume Scattering by Dielectric Targets.
2.6 Volume Equivalence Principle.
2.7 Integral Equations.
2.8 Surface Scattering by Perfectly Electric Conducting Targets.
References.
3 The Electromagnetic Inverse Scattering Problem.
3.1 Introduction.
3.2 Three-Dimensional Inverse Scattering.
3.3 Two-Dimensional Inverse Scattering.
3.4 Discretization of the Continuous Model.
3.5 Scattering by Canonical Objects: The Case of Multilayer Elliptic Cylinders.
References.
4 Imaging Configurations and Model Approximations.
4.1 Objectives of the Reconstruction.
4.2 Multiillumination Approaches.
4.3 Tomographic Confi gurations.
4.4 Scanning Confi gurations.
4.5 Confi gurations for Buried-Object Detection.
4.6 Born-Type Approximations.
4.7 Extended Born Approximation.
4.8 Rytov Approximation.
4.9 Kirchhoff Approximation.
4.10 Green's Function for Inhomogeneous Structures.
References.
5 Qualitative Reconstruction Methods.
5.1 Introduction.
5.2 Generalized Solution of Linear Ill-Posed Problems.
5.3 Regularization Methods.
5.4 Singular Value Decomposition.
5.5 Singular Value Decomposition for Solving Linear Problems.
5.6 Regularized Solution of a Linear System Using Singular Value Decomposition.
5.7 Qualitative Methods for Object Localization and Shaping.
5.8 The Linear Sampling Method.
5.9 Synthetic Focusing Techniques.
5.10 Qualitative Methods for Imaging Based on Approximations.
5.11 Diffraction Tomography.
5.12 Inversion Approaches Based on Born-Like Approximations.
5.13 The Born Iterative Method.
5.14 Reconstruction of Equivalent Current Density.
References.
6 Quantitative Deterministic Reconstruction Methods.
6.1 Introduction.
6.2 Inexact Newton Methods.
6.3 The Truncated Landweber Method.
6.4 Inexact Newton Method for Electric Field Integral Equation Formulation.
6.5 Inexact Newton Method for Contrast Source Formulation.
6.6 The Distorted Born Iterative Method.
6.7 Inverse Scattering as an Optimization Problem.
6.8 Gradient-Based Methods.
References.
7 Quantitative Stochastic Reconstruction Methods.
7.1 Introduction.
7.2 Simulated Annealing.
7.3 The Genetic Algorithm.
7.4 The Differential Evolution Algorithm.
7.5 Particle Swarm Optimization.
7.6 Ant Colony Optimization.
7.7 Code Parallelization.
References.

8 Hybrid Approaches.
8.1 Introduction.
8.2 The Memetic Algorithm.
8.3 Linear Sampling Method and Ant Colony Optimization.
References.
9 Microwave Imaging Apparatuses and Systems.
9.1 Introduction.
9.2 Scanning Systems for Microwave Tomography.
9.3 Antennas for Microwave Imaging.
9.4 The Modulated Scattering Technique and Microwave Cameras.
References.
10 Applications of Microwave Imaging.
10.1 Civil and Industrial Applications.
10.2 Medical Applications of Microwave Imaging.
10.3 Shallow Subsurface Imaging.
References.
11 Microwave Imaging Strategies, Emerging Techniques, and Future Trends.
11.1 Introduction.
11.2 Potentialities and Limitations of Three-Dimensional Microwave Imaging.
11.3 Amplitude-Only Methods.
11.4 Support Vector Machines.
11.5 Metamaterials for Imaging Applications.

11.6 Through-Wall Imaging.
References.
INDEX.

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上