【内容简介】

Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems offers you a solid understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, feature matching, and integrated navigation. It provides both an introduction to navigation systems and an in-depth treatment of INS/GNSS and multisensor integration. The book shows you how satellite, inertial, and other navigation technologies work, and focuses on processing chains and error sources. In addition, you get a clear introduction to co-ordinate frame, multi-frame kinematics, Earth models, gravity, and the Kalman filter.
Providing solutions to common integration problems, the book describes and compares different integration architectures, and explains how to model different error sources. You get a broad and penetrating overview of current technology and are brought up to speed with the latest developments in the field, including the new GNSS signals, GNSS operation in challenging environments, deep integration, enhanced Loran, urban and indoor positioning, and pedestrian dead reckoning.
【目次】Preface xv
PART I
Introduction 1
CHAPTER 1
Introduction 3
1.1 What Is Navigation? 3
1.1.1 Position Fixing 4
1.1.2 Dead Reckoning 6
1.2 Inertial Navigation 7
1.3 Radio and Satellite Navigation 8
1.3.1 Terrestrial Radio Navigation 9
1.3.2 Satellite Navigation 10
1.4 Feature Matching 12
1.5 The Complete Navigation System 13
References 14
PART II
Navigation Mathematics 15
CHAPTER 2
Coordinate Frames, Kinematics, and the Earth 17
2.1 Coordinate Frames 17
2.1.1 Earth-Centered Inertial Frame 19
2.1.2 Earth-Centered Earth-Fixed Frame 20
2.1.3 Local Navigation Frame 20
2.1.4 Body Frame 21
2.1.5 Other Frames 22
2.2 Kinematics 23
2.2.1 Euler Attitude 24
2.2.2 Coordinate Transformation Matrix 26
2.2.3 Quaternion Attitude 29
2.2.4 Rotation Vector 30
2.2.5 Angular Rate 30
2.2.6 Cartesian Position 31
2.2.7 Velocity 33
2.2.8 Acceleration 34
2.3 Earth Surface and Gravity Models 35
2.3.1 The Ellipsoid Model of the Earth’s Surface 36
2.3.2 Curvilinear Position 38
2.3.3 The Geoid and Orthometric Height 43
2.3.4 Earth Rotation 44
2.3.5 Specific Force, Gravitation, and Gravity 45
2.4 Frame Transformations 49
2.4.1 Inertial and Earth Frames 49
2.4.2 Earth and Local Navigation Frames 50
2.4.3 Inertial and Local Navigation Frames 51
2.4.4 Transposition of Navigation Solutions 52
References 53
Selected Bibliography 53
Endnotes 54
CHAPTER 3
The Kalman Filter 55
3.1 Introduction 55
3.1.1 Elements and Phases of the Kalman Filter 56
3.1.2 Kalman Filter Applications 58
3.2 Algorithms and Models 59
3.2.1 Definitions 59
3.2.2 Kalman Filter Algorithm 62
3.2.3 Kalman Filter Behavior 65
3.2.4 System Model 67
3.2.5 Measurement Model 70
3.2.6 Closed-Loop Kalman Filter 73
3.3 Implementation Issues 74
3.3.1 Tuning and Stability 74
3.3.2 Algorithm Design 75
3.3.3 Numerical Issues 77
3.3.4 Handling Data Lags 78
3.3.5 Kalman Filter Design Process 80
3.4 Extensions to the Kalman Filter 80
3.4.1 Extended and Linearized Kalman Filter 80
3.4.2 Time-Correlated Noise and the Schmidt-Kalman Filter 83
3.4.3 Adaptive Kalman Filter 85
3.4.4 Multiple-Hypothesis Filtering 86
3.4.5 Kalman Smoothing 90
References 91
Selected Bibliography 93
Endnotes 93
PART III
Navigation Systems 95
CHAPTER 4
Inertial Sensors 97
4.1 Accelerometers 98
4.1.1 Pendulous Accelerometers 100
4.1.2 Vibrating-Beam Accelerometers 101
4.2 Gyroscopes 101
4.2.1 Spinning-Mass Gyroscopes 102
4.2.2 Optical Gyroscopes 105
4.2.3 Vibratory Gyroscopes 108
4.3 Inertial Measurement Units 109
4.4 Error Characteristics 112
4.4.1 Biases 113
4.4.2 Scale Factor and Cross-Coupling Errors 114
4.4.3 Random Noise 115
4.4.4 Further Error Sources 117
4.4.5 Error Models 117
References 118
CHAPTER 5
Inertial Navigation 121
5.1 Inertial-Frame Navigation Equations 122
5.1.1 Attitude Update 123
5.1.2 Specific-Force Frame Transformation 124
5.1.3 Velocity Update 125
5.1.4 Position Update 126
5.2 Earth-Frame Navigation Equations 126
5.2.1 Attitude Update 126
5.2.2 Specific-Force Frame Transformation 128
5.2.3 Velocity Update 128
5.2.4 Position Update 129
5.3 Local-Navigation-Frame Navigation Equations 129
5.3.1 Attitude Update 130
5.3.2 Specific-Force Frame Transformation 132
5.3.3 Velocity Update 132
5.3.4 Position Update 133
5.3.5 Wander-Azimuth Implementation 134
5.4 Navigation Equations Precision 135
5.4.1 Iteration Rates 136
5.4.2 Attitude Update 137
5.4.3 Specific-Force Frame Transformation 142
5.4.4 Velocity and Position Updates 143
5.4.5 Effects of Vibration 144
5.5 Initialization and Alignment 146
5.5.1 Position and Velocity Initialization 146
5.5.2 Attitude Initialization 147
5.5.3 Fine Alignment 150
5.6 INS Error Propagation 151
5.6.1 Short-Term Straight-Line Error Propagation 152
5.6.2 Medium and Long-Term Error Propagation 154
5.6.3 Errors Due to Circling 157
5.7 Platform INS 157
5.8 Horizontal-Plane Inertial Navigation 158
References 159
Selected Bibliography 159
Endnotes 160
CHAPTER 6
Satellite Navigation Systems 161
6.1 Fundamentals of Satellite Navigation 161
6.1.1 GNSS Architecture 162
6.1.2 Positioning 163
6.1.3 Signals and Range Measurements 166
6.2 Global Positioning System 170
6.2.1 Space and Control Segments 171
6.2.2 Signals 173
6.2.3 Navigation Data Messages 176
6.2.4 Augmentation Systems 177
6.3 GLONASS 179
6.3.1 Space and Control Segments 179
6.3.2 Signals 180
6.3.3 Navigation Data Messages 181
6.4 Galileo 181
6.4.1 Space and Ground Segments 182
6.4.2 Signals 183
6.4.3 Navigation Data Messages 186
6.5 Regional Navigation Systems 186
6.5.1 Beidou and Compass 186
6.5.2 QZSS 187
6.5.3 IRNSS 188
6.6 GNSS Interoperability 188
6.6.1 Frequency Compatibility 189
6.6.2 User Competition 189
6.6.3 Multistandard User Equipment 190
References 190
Selected Bibliography 193
CHAPTER 7
Satellite Navigation Processing, Errors, and Geometry 195
7.1 Satellite Navigation Geometry 196
7.1.1 Satellite Position and Velocity 196
7.1.2 Range, Range Rate, and Line of Sight 203
7.1.3 Elevation and Azimuth 207
7.1.4 Signal Geometry and Navigation Solution Accuracy 208
7.2 Receiver Hardware and Antenna 211
7.2.1 Antennas 212
7.2.2 Reference Oscillator and Receiver Clock 213
7.2.3 Receiver Front-End 214
7.2.4 Baseband Signal Processor 216
7.3 Ranging Processor 226
7.3.1 Acquisition 227
7.3.2 Code Tracking 229
7.3.3 Carrier Tracking 234
7.3.4 Tracking Lock Detection 240
7.3.5 Navigation-Message Demodulation 241
7.3.6 Carrier-Power-to-Noise-Density Measurement 242
7.3.7 Pseudo-Range, Pseudo-Range-Rate, and Carrier-Phase Measurements 244
7.4 Range Error Sources 245
7.4.1 Satellite Clock and Ephemeris Prediction Errors 245
7.4.2 Ionosphere and Troposphere Propagation Errors 247
7.4.3 Tracking Errors 250
7.4.4 Multipath 254
7.5 Navigation Processor 258
7.5.1 Single-Point Navigation Solution 259
7.5.2 Filtered Navigation Solution 262
7.5.3 Combined Navigation and Tracking 270
7.5.4 Position Error Budget 273
References 274
Selected Bibliography 277
Endnotes 277
CHAPTER 8
Advanced Satellite Navigation 279
8.1 Differential GNSS 279
8.1.1 Spatial and Temporal Correlation of GNSS Errors 279
8.1.2 Local and Regional Area DGNSS 280
8.1.3 Wide Area DGNSS 282
8.1.4 Precise Point Positioning 282
8.1.5 Relative GNSS 283
8.2 Carrier-Phase Positioning and Attitude 283
8.2.1 Integer Ambiguity Resolution 285
8.2.2 GNSS Attitude Determination 288
8.3 Poor Signal-to-Noise Environments 289
8.3.1 Antenna Systems 290
8.3.2 Receiver Front-End Filtering 291
8.3.3 Assisted GNSS 291
8.3.4 Acquisition 291
8.3.5 Tracking 293
8.3.6 Extended Coherent Integration 294
8.4 Multipath Mitigation 294
8.4.1 Antenna Systems 294
8.4.2 Receiver-Based Techniques 295
8.4.3 Multipath Mapping 296
8.4.4 Navigation Processor Filtering 296
8.5 Signal Monitoring 296
8.6 Semi-Codeless Tracking 297
References 298
CHAPTER 9
Terrestrial Radio Navigation 303
9.1 Point-Source Systems 303
9.2 Loran 305
9.2.1 The Loran Systems 306
9.2.2 Signals and User-Equipment Processing 307
9.2.3 Positioning 308
9.2.4 Error Sources 310
9.2.5 Differential Loran 311
9.3 Instrument Landing System 311
9.4 Urban and Indoor Positioning 312
9.4.1 Mobile Phones 312
9.4.2 Signals of Opportunity 313
9.4.3 GNSS Repeaters 314
9.4.4 WLAN Positioning 314
9.4.5 UWB Positioning 315
9.4.6 Short-Range Beacons 316
9.5 Relative Navigation 316
9.6 Tracking 318
9.7 Sonar Transponders 318
References 318
CHAPTER 10
Dead Reckoning, Attitude, and Height Measurement 321
10.1 Attitude Measurement 321
10.1.1 Leveling 321
10.1.2 Magnetic Heading 322
10.1.3 Integrated Heading Measurement 326
10.1.4 Attitude and Heading Reference System 327
10.2 Height and Depth Measurement 327
10.2.1 Barometric Altimeter 328
10.2.2 Depth Pressure Sensor 329
10.2.3 Radar Altimeter 329
10.3 Odometers 330
10.4 Pedestrian Dead Reckoning 335
10.5 Doppler Radar and Sonar 337
10.6 Other Dead-Reckoning Techniques 340
10.6.1 Image Processing 341
10.6.2 Landmark Tracking 341
10.6.3 Correlation Velocity Log 341
10.6.4 Air Data 342
10.6.5 Ship’s Log 342
References 342
CHAPTER 11
Feature Matching 345
11.1 Terrain-Referenced Navigation 345
11.1.1 Sequential Processing 346
11.1.2 Batch Processing 347
11.1.3 Performance 349
11.1.4 Laser TRN 350
11.1.5 Barometric TRN 351
11.1.6 Sonar TRN 351
11.2 Image Matching 351
11.2.1 Scene Matching by Area Correlation 352
11.2.2 Continuous Visual Navigation 353
11.3 Map Matching 353
11.4 Other Feature-Matching Techniques 355
11.4.1 Stellar Navigation 356
11.4.2 Gravity Gradiometry 356
11.4.3 Magnetic Field Variation 357
References 357
Selected Bibliography 359
PART IV
Integrated Navigation 361
CHAPTER 12
INS/GNSS Integration 363
12.1 Integration Architectures 364
12.1.1 Correction of the Inertial Navigation Solution 365
12.1.2 Loosely Coupled Integration 368
12.1.3 Tightly Coupled Integration 370
12.1.4 GNSS Aiding 371
12.1.5 Deep Integration 373
12.2 System Model and State Selection 375
12.2.1 State Selection and Observability 376
12.2.2 INS State Propagation in the Inertial Frame 378
12.2.3 INS State Propagation in the Earth Frame 382
12.2.4 INS State Propagation Resolved in the Local Navigation Frame 384
12.2.5 INS System Noise 387
12.2.6 GNSS State Propagation and System Noise 388
12.3 Measurement Models 389
12.3.1 Loosely Coupled Integration 390
12.3.2 Tightly Coupled Integration 393
12.3.3 Deep Integration 396
12.3.4 Estimation of Attitude and Instrument Errors 398
12.4 Advanced INS/GNSS Integration 399
12.4.1 Differential GNSS 399
12.4.2 Carrier-Phase Positioning and GNSS Attitude 399
12.4.3 Large Heading Errors 401
12.4.4 Advanced IMU Error Modeling 402
12.4.5 Smoothing 403
References 403
Selected Bibliography 406
Endnotes 406
CHAPTER 13
INS Alignment and Zero Velocity Updates 407
13.1 Transfer Alignment 407
13.1.1 Conventional Measurement Matching 409
13.1.2 Rapid Transfer Alignment 410
13.1.3 Reference Navigation System 412
13.2 Quasi-Stationary Alignment with Unknown Heading 413
13.3 Quasi-Stationary Fine Alignment and Zero Velocity Updates 415
References 417
Selected Bibliography 418
CHAPTER 14
Multisensor Integrated Navigation 419
14.1 Integration Architectures 420
14.1.1 Least-Squares Integration 420
14.1.2 Cascaded Integration 422
14.1.3 Centralized Integration 424
14.1.4 Federated Integration 426
14.1.5 Hybrid Integration Architectures 429
14.1.6 Total-State Kalman Filter Employing Prediction 429
14.1.7 Error-State Kalman Filter 432
14.2 Terrestrial Radio Navigation 433
14.2.1 Loosely Coupled Integration 434
14.2.2 Tightly Coupled Integration 434
14.3 Dead Reckoning, Attitude, and Height Measurement 437
14.3.1 Attitude 438
14.3.2 Height and Depth 440
14.3.3 Odometers 441
14.3.4 Pedestrian Dead Reckoning 443
14.3.5 Doppler Radar and Sonar 444
14.4 Feature Matching 445
14.4.1 Position Fixes 445
14.4.2 Line Fixes 446
14.4.3 Ambiguous Measurements 448
References 448
CHAPTER 15
Fault Detection and Integrity Monitoring 451
15.1 Failure Modes 451
15.1.1 Inertial Navigation 452
15.1.2 GNSS 452
15.1.3 Terrestrial Radio Navigation 453
15.1.4 Dead Reckoning, Attitude, and Height Measurement 453
15.1.5 Feature Matching 453
15.1.6 Integration Algorithm 453
15.2 Range Checks 454
15.2.1 Sensor Outputs 454
15.2.2 Navigation Solution 455
15.2.3 Kalman Filter Estimates 455
15.3 Kalman Filter Measurement Innovations 455
15.3.1 Innovation Filtering 456
15.3.2 Innovation Sequence Monitoring 458
15.3.3 Remedying Biased State Estimates 459
15.4 Direct Consistency Checks 460
15.4.1 Measurement Consistency Checks and RAIM 461
15.4.2 Parallel Solutions 463
15.5 Certified Integrity Monitoring 465
References 469
APPENDIX A
Vectors and Matrices 471
A.1 Introduction to Vectors 471
A.2 Introduction to Matrices 473
A.3 Special Matrix Types 476
A.4 Matrix Inversion 477
A.5 Calculus 478
References 478
APPENDIX B
Statistical Measures 479
B.1 Mean, Variance, and Standard Deviation 479
B.2 Probability Density Function 479
B.3 Gaussian Distribution 480
B.4 Chi-Square Distribution 481
References 483
List of Symbols 485
List of Acronyms and Abbreviations 497
About the Author 505
Index 507