新书报道
当前位置: 首页 >> 电子电气计算机信息科学 >> 正文
Robust control design : an optimal control approach (鲁棒控制设计 - 最优控制方法)
发布日期:2009-04-02  浏览

【内容简介】
Comprehensive and accessible guide to the three main approaches to robust control design and its applications Optimal control is a mathematical field that is concerned with control policies that can be deduced using optimization algorithms. The optimal control approach to robust control design differs from conventional direct approaches to robust control that are more commonly discussed by firstly translating the robust control problem into its optimal control counterpart, and then solving the optimal control problem. Robust Control Design: An Optimal Control Approach offers a complete presentation of this approach to robust control design, presenting modern control theory in an concise manner. The other two major approaches to robust control design, the H_infinite approach and the Kharitonov approach, are also covered and described in the simplest terms possible, in order to provide a complete overview of the area. It includes up-to-date research, and offers both theoretical and practical applications that include flexible structures, robotics, and automotive and aircraft control. Robust Control Design: An Optimal Control Approach will be of interest to those needing an introductory textbook on robust control theory, design and applications as well as graduate and postgraduate students involved in systems and control research. Practitioners will also find the applications presented useful when solving practical problems in the engineering field.
【目次】
Contents Preface Notation
1 Introduction
1.1 Systems and Control
1.2 Modern Control Theory
1.3 Stability
1.4 Optimal Control
1.5 Optimal Control Approach
1.6 Kharitonov Approach
1.7 H and H2 Control
1.8 Applications
1.9 Use of This Book
2 Fundamentals of Control Theory
2.1 State Space Model
2.2 Responses of Linear Systems
2.3 Similarity Transformation
2.4 Controllability and Observability
2.5 Pole Placement by State Feedback
2.6 Pole Placement Using Observer
2.7 Notes and References
2.8 Problems
3 Stability Theory
3.1 Stability and Lyapunov Theorem
3.2 Linear Systems
3.3 Routh Hurwitz Criterion
3.4 Nyquist Criterion
3.5 Stabilizability and Detectability
3.6 Notes and References
3.7 Problems
4 Optimal Control and Optimal Observers
4.1 Optimal Control Problem
4.2 Principle of Optimality
4.3 Hamilton Jacobi Bellman Equation
4.4 Linear Quadratic Regulator Problem
4.5 Kalman Filter
4.6 Notes and References
4.7 Problems
5 Robust Control of Linear Systems
5.1 Introduction
5.2 Matched Uncertainty
5.3 Unmatched Uncertainty
5.4 Uncertainty in the Input Matrix
5.5 Notes and References
5.6 Problems
6 Robust Control of Nonlinear Systems
6.1 Introduction
6.2 Matched Uncertainty
6.3 Unmatched Uncertainty
6.4 Uncertainty in the Input Matrix
6.5 Notes and References
6.6 Problems
7 Kharitonov Approach
7.1 Introduction
7.2 Preliminary Theorems
7.3 Kharitonov Theorem
7.4 Control Design Using Kharitonov Theorem
7.5 Notes and References
7.6 Problems
8 H and H2 Control
8.1 Introduction
8.2 Function Space
8.3 Computation of H2 and H Norms
8.4 Robust Control Problem as H2 and H Control Problem
8.5 H2/H Control Synthesis
8.6 Notes and References
8.7 Problems
9 Robust Active Damping
9.1 Introduction
9.2 Problem Formulation
9.3 Robust Active Damping Design
9.4 Active Vehicle Suspension System
9.5 Discussion
9.6 Notes and References
10 Robust Control of Manipulators
10.1 Robot Dynamics
10.2 Problem Formulation
10.3 Robust Control Design
10.4 Simulations
10.5 Notes and References
11 Aircraft Hovering Control
11.1 Modelling and Problem Formulation
11.2 Control Design for Jet borne Hovering
11.3 Simulation
11.4 Notes and References Appendix A: Mathematical Modelling of Physical Systems References and Bibliography Index

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上