新书报道
当前位置: 首页 >> 天文学地球科学海洋学 >> 正文
The Self-Potential Method : Theory and Applications in Environmental Geosciences
发布日期:2015-12-08  浏览

The Self-Potential Method : Theory and Applications in Environmental Geosciences

[BOOK DESCRIPTION]

The self-potential method enables non-intrusive assessment and imaging of disturbances in electrical currents of conductive subsurface materials. It has an increasing number of applications, from mapping fluid flow in the subsurface of the Earth to detecting preferential flow paths in earth dams and embankments. This book provides the first full overview of the fundamental concepts of this method and its applications in the field. It discusses a historical perspective, laboratory investigations undertaken, the inverse problem and seismoelectric coupling, and concludes with the application of the self-potential method to geohazards, water resources and hydrothermal systems. Chapter exercises, online datasets and analytical software enable the reader to put the theory into practice. This book is a key reference for academic researchers and professionals working in the areas of geophysics, environmental science, hydrology and geotechnical engineering. It will also be valuable reading for related graduate courses.


[TABLE OF CONTENTS]

Foreword                                           ix
          Susan S. Hubbard
Preface                                            xi
    1 Fundamentals of the self-potential method    1  (22)
      1.1 Measurements                             1  (10)
      1.2 The electrical double layer              11 (3)
      1.3 Brief history                            14 (2)
      1.4 The Poisson equation                     16 (1)
      1.5 Sources of noise                         17 (2)
      1.6 Conclusions                              19 (4)
        Exercises                                  19 (4)
    2 Development of a fundamental theory          23 (59)
      2.1 Non-equilibrium thermodynamic            23 (21)
      2.2 Upscaling: from local to macroscopic     44 (24)
      equations
      2.3 The geobattery and biogeobattery         68 (7)
      concepts
      2.4 Conclusions                              75 (7)
        Exercises                                  77 (5)
    3 Laboratory investigations                    82 (28)
      3.1 Analyzing low-frequency electrical       82 (17)
      properties
      3.2 Investigating the geobattery concept     99 (5)
      in the laboratory
      3.3 Conclusions                              104(6)
        Exercises                                  105(5)
    4 Forward and inverse modeling                 110(44)
      4.1 Position of the problem                  110(4)
      4.2 Gradient-based approaches and their      114(17)
      limitations
      4.3 Fully coupled inversion                  131(17)
      4.4 Conclusions                              148(6)
        Exercises                                  149(5)
    5 Applications to geohazards                   154(38)
      5.1 Landslides and flank stability           154(6)
      5.2 Sinkhole detection                       160(7)
      5.3 Detection of cavities                    167(4)
      5.4 Leakages in dams and embankments         171(20)
      5.5 Conclusion                               191(1)
    6 Application to water resources               192(53)
      6.1 Pumping tests                            192(17)
      6.2 Flow in the vadose zone                  209(10)
      6.3 Catchments hydrogeology                  219(13)
      6.4 Contaminant plumes                       232(11)
      6.5 Conclusions                              243(2)
        Exercises                                  243(2)
    7 Application to hydrothermal systems          245(39)
      7.1 Stochastic inversion of temperature      245(16)
      and self-potential data
      7.2 The Cerro Prieto case study              261(7)
      7.3 Gradient-based approach applied to       268(14)
      hydrothermal fields
      7.4 Conclusions                              282(2)
        Exercises                                  282(2)
    8 Seismoelectric coupling                      284(58)
      8.1 Position of the problem                  284(2)
      8.2 Seismoelectric theory in saturated       286(5)
      media
      8.3 Numerical modeling                       291(2)
      8.4 Application in saturated conditions      293(5)
      8.5 Seismoelectric theory in unsaturated     298(21)
      media
      8.6 Application in two-phase flow            319(7)
      conditions
      8.7 Localization of hydromechanical events   326(9)
      8.8 Seismic beamforming and the formation    335(3)
      of electrical bursts
      8.9 Conclusions                              338(4)
        Exercises                                  339(3)
Appendix A A simple model of the Stern layer       342(3)
Appendix B The u-p formulation of poroelasticity   345(3)
References                                         348(19)
Index                                              367

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上