新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
稳健粗糙集及应用
发布日期:2016-06-27  浏览

[内容推荐]

本书系统总结了作者近几年在稳健粗糙集建模及算法设计方面的研究成果。该书针对实际应用中不可避免的噪声问题分别论述了未考虑数据概率分布和充分利用数据概率分布的稳健粗糙集建模方法。其中,基于变精度、软距离和稳健统计量的粗糙集模型是在未考虑数据概率分布信息的前提下研究的稳健模型,概率模糊粗糙集是一种适用于服从不同概率分布的数据集的稳健模型。本书从应用出发,将提出的稳健粗糙集模型用于设计稳健分类与预测模型,提出了模糊粗糙决策树模型、稳健模糊粗糙分类模型、原型选择及稳健分类模型和模糊粗糙回归预测模型。最后, 本书将这些预测模型应用于太阳耀斑预报与风电预报,进一步验证稳健粗糙集模型及算法在实践中的稳健性和实用性。

上一条:线性代数
下一条:概率论

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上