新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Diffraction, fourier optics, and imaging (傅氏光学与衍射光学)
发布日期:2007-09-14  浏览

【内容简介
This book presents current theories of diffraction, imaging, and related topics based on Fourier analysis and synthesis techniques, which are essential for understanding, analyzing, and synthesizing modern imaging, optical communications and networking, as well as micro/nano systems. Applications covered include tomography; magnetic resonance imaging; synthetic aperture radar (SAR) and interferometric SAR; optical communications and networking devices; computer-generated holograms and analog holograms; and wireless systems using EM waves.

Table Of Contents

Preface

       1. Diffraction, Fourier Optics and Imaging

             1.1 Introduction

             1.2 Examples of Emerging Applications with Growing Significance

                    1.2.1 Dense Wavelength Division Multiplexing/Demultiplexing (DWDM)

                    1.2.2 Optical and Microwave DWDM Systems

                    1.2.3 Diffractive and Subwavelength Optical Elements

                    1.2.4 Nanodiffractive Devices and Rigorous Diffraction Theory

                    1.2.5 Modern Imaging Techniques

       2. Linear Systems and Transforms

             2.1 Introduction

             2.2 Linear Systems and Shift Invariance

             2.3 Continuous-Space Fourier Transform

             2.4 Existence of Fourier Transform

             2.5 Properties of the Fourier Transform

             2.6 Real Fourier Transform

             2.7 Amplitude and Phase Spectra

             2.8 Hankel Transforms

       3. Fundamentals of Wave Propagation

             3.1 Introduction

             3.2 Waves

             3.3 Electromagnetic Waves

             3.4 Phasor Representation

             3.5 Wave Equations in a Charge-Free Medium

             3.6 Wave Equations in Phasor Representation in a Charge-Free Medium

             3.7 Plane EM Waves

       4. Scalar Diffraction Theory

             4.1 Introduction

             4.2 Helmholtz Equation

             4.3 Angular Spectrum of Plane Waves

             4.4 Fast Fourier Transform (FFT) Implementation of the Angular Spectrum of Plane Waves

             4.5 The Kirchoff Theory of Diffraction

                    4.5.1 Kirchoff Theory of Diffraction

                    4.5.2 Fresnel-Kirchoff Diffraction Formula

             4.6 The Rayleigh-Sommerfeld Theory of Diffraction

                    4.6.1 The Kirchhoff Approximation

                    4.6.2 The Second Rayleigh-Sommerfeld Diffraction Formula

             4.7 Another Derivation of the First Rayleigh-Sommerfeld Diffraction Integral

             4.8 The Rayleigh-Sommerfeld Diffraction Integral For Nonmonochromatic Waves

       5. Fresnel and Fraunhofer Approximations

             5.1 Introduction

             5.2 Diffraction in the Fresnel Region

             5.3 FFT Implementation of Fresnel Diffraction

             5.4 Paraxial Wave Equation

             5.5 Diffraction in the Fraunhofer Region

             5.6 Diffraction Gratings

             5.7 Fraunhofer Diffraction By a Sinusoidal Amplitude Grating

             5.8 Fresnel Diffraction By a Sinusoidal Amplitude Grating

             5.9 Fraunhofer Diffraction with a Sinusoidal Phase Grating

             5.10 Diffraction Gratings Made of Slits

       6. Inverse Diffraction

             6.1 Introduction

             6.2 Inversion of the Fresnel and Fraunhofer Representations

             6.3 Inversion of the Angular Spectrum Representation

             6.4 Analysis

       7. Wide-Angle Near and Far Field Approximations for Scalar Diffraction

             7.1 Introduction

             7.2 A Review of Fresnel and Fraunhofer Approximations

             7.3 The Radial Set of Approximations

             7.4 Higher Order Improvements and Analysis

             7.5 Inverse Diffraction and Iterative Optimization

             7.6 Numerical Examples

             7.7 More Accurate Approximations

             7.8 Conclusions

       8. Geometrical Optics

             8.1 Introduction

             8.2 Propagation of Rays

             8.3 The Ray Equations

             8.4 The Eikonal Equation

             8.5 Local Spatial Frequencies and Rays

             8.6 Matrix Representation of Meridional Rays

             8.7 Thick Lenses

             8.8 Entrance and Exit Pupils of an Optical System

       9. Fourier Transforms and Imaging with Coherent Optical Systems

             9.1 Introduction

             9.2 Phase Transformation With a Thin Lens

             9.3 Fourier Transforms With Lenses

                    9.3.1 Wave Field Incident on the Lens

                    9.3.2 Wave Field to the Left of the Lens

                    9.3.3 Wave Field to the Right of the Lens

             9.4 Image Formation As 2-D Linear Filtering

                    9.4.1 The Effect of Finite Lens Aperture

             9.5 Phase Contrast Microscopy

             9.6 Scanning Confocal Microscopy

                    9.6.1 Image Formation

             9.7 Operator Algebra for Complex Optical Systems

10. Imaging with Quasi-Monochromatic Waves

             10.1 Introduction

             10.2 Hilbert Transform

             10.3 Analytic Signal

             10.4 Analytic Signal Representation of a Nonmonochromatic Wave Field

             10.5 Quasi-Monochromatic, Coherent, and Incoherent Waves

             10.6 Diffraction Effects in a General Imaging System

             10.7 Imaging With Quasi-Monochromatic Waves

                    10.7.1 Coherent Imaging

                    10.7.2 Incoherent Imaging

             10.8 Frequency Response of a Diffraction-Limited Imaging System

                    10.8.1 Coherent Imaging System

                    10.8.2 Incoherent Imaging System

             10.9 Computer Computation of the Optical Transfer Function

                    10.9.1 Practical Considerations

             10.10 Aberrations

                    10.10.1 Zernike Polynomials

11. Optical Devices Based on Wave Modulation

             11.1 Introduction

             11.2 Photographic Films and Plates

             11.3 Transmittance of Light by Film

             11.4 Modulation Transfer Function

             11.5 Bleaching

             11.6 Diffractive Optics, Binary Optics, and Digital Optics

             11.7 E-Beam Lithography

                    11.7.1 DOE Implementation

12. Wave Propagation in Inhomogeneous Media

             12.1 Introduction

             12.2 Helmholtz Equation For Inhomogeneous Media

             12.3 Paraxial Wave Equation For Inhomogeneous Media

             12.4 Beam Propagation Method

                    12.4.1 Wave Propagation in Homogeneous Medium with Index n

                    12.4.2 The Virtual Lens Effect

             12.5 Wave Propagation in a Directional Coupler

                    12.5.1 A Summary of Coupled Mode Theory

                    12.5.2 Comparison of Coupled Mode Theory and BPM Computations

13. Holography

             13.1 Introduction

             13.2 Coherent Wave Front Recording

                    13.2.1 Leith?patnieks Hologram

             13.3 Types of Holograms

                    13.3.1 Fresnel and Fraunhofer Holograms

                    13.3.2 Image and Fourier Holograms

                    13.3.3 Volume Holograms

                    13.3.4 Embossed Holograms

             13.4 Computer Simulation of Holographic Reconstruction

             13.5 Analysis of Holographic Imaging and Magnification

             13.6 Aberrations

14. Apodization, Superresolution, and Recovery of Missing Information

             14.1 Introduction

             14.2 Apodization

                    14.2.1 Discrete-Time Windows

             14.3 Two-Point Resolution and Recovery of Signals

             14.4 Contractions

                    14.4.1 Contraction Mapping Theorem

             14.5 An Iterative Method of Contractions for Signal Recovery

             14.6 Iterative Constrained Deconvolution

             14.7 Method of Projections

             14.8 Method of Projections onto Convex Sets

             14.9 Gerchberg?apoulis (GP) Algorithm

             14.10 Other POCS Algorithms

             14.11 Restoration From Phase

             14.12 Reconstruction From a Discretized Phase Function by Using the DFT

             14.13 Generalized Projections

             14.14 Restoration From Magnitude

                    14.14.1 Traps and Tunnels

             14.15 Image Recovery By Least Squares and the Generalized Inverse

             14.16 Computation of H+ By Singular Value Decomposition (SVD)

             14.17 The Steepest Descent Algorithm

             14.18 The Conjugate Gradient Method

15. Diffractive Optics I

             15.1 Introduction

             15.2 Lohmann Method

             15.3 Approximations in the Lohmann Method

             15.4 Constant Amplitude Lohmann Method

             15.5 Quantized Lohmann Method

             15.6 Computer Simulations with the Lohmann Method

             15.7 A Fourier Method Based on Hard-Clipping

             15.8 A Simple Algorithm for Construction of 3-D Point Images

                    15.8.1 Experiments

             15.9 The Fast Weighted Zero-Crossing Algorithm

                    15.9.1 Off-Axis Plane Reference Wave

                    15.9.2 Experiments

             15.10 One-Image-Only Holography

                    15.10.1 Analysis of Image Formation

                    15.10.2 Experiments

             15.11 Fresnel Zone Plates

16. Diffractive Optics II

             16.1 Introduction

             16.2 Virtual Holography

                    16.2.1 Determination of Phase

                    16.2.2 Aperture Effects

                    16.2.3 Analysis of Image Formation

                    16.2.4 Information Capacity, Resolution, Bandwidth, and Redundancy

                    16.2.5 Volume Effects

                    16.2.6 Distortions Due to Change of Wavelength and/or Hologram Size Between Construction and Reconstruction

                    16.2.7 Experiments

             16.3 The Method of POCS for the Design of Binary DOE

             16.4 Iterative Interlacing Technique (IIT)

                    16.4.1 Experiments with the IIT

             16.5 Optimal Decimation-in-Frequency Iterative Interlacing Technique (ODIFIIT)

                    16.5.1 Experiments with ODIFIIT

             16.6 Combined Lohmann-ODIFIIT Method

                    16.6.1 Computer Experiments with the Lohmann-ODIFIIT Method

17. Computerized Imaging Techniques I: Synthetic Aperture Radar

             17.1 Introduction

             17.2 Synthetic Aperture Radar

             17.3 Range Resolution

             17.4 Choice of Pulse Waveform

             17.5 The Matched Filter

             17.6 Pulse Compression by Matched Filtering

             17.7 Cross-Range Resolution

             17.8 A Simplified Theory of SAR Imaging

             17.9 Image Reconstruction with Fresnel Approximation

             17.10 Algorithms for Digital Image Reconstruction

                    17.10.1 Spatial Frequency Interpolation

18. Computerized Imaging II: Image Reconstruction from Projections

             18.1 Introduction

             18.2 The Radon Transform

             18.3 The Projection Slice Theorem

             18.4 The Inverse Radon Transform

             18.5 Properties of the Radon Transform

             18.6 Reconstruction of a Signal From its Projections

             18.7 The Fourier Reconstruction Method

             18.8 The Filtered-Backprojection Algorithm

19. Dense Wavelength Division Multiplexing

             19.1 Introduction

             19.2 Array Waveguide Grating

             19.3 Method of Irregularly Sampled Zero-Crossings (MISZC)

                    19.3.1 Computational Method for Calculating the Correction Terms

                    19.3.2 Extension of MISZC to 3-D Geometry

             19.4 Analysis of MISZC

                    19.4.1 Dispersion Analysis

                    19.4.2 Finite-Sized Apertures

             19.5 Computer Experiments

                    19.5.1 Point-Source Apertures

                    19.5.2 Large Number of Channels

                    19.5.3 Finite-Sized Apertures

                    19.5.4 The Method of Creating the Negative Phase

                    19.5.5 Error Tolerances

                    19.5.6 3-D Simulations

                    19.5.7 Phase Quantization

             19.6 Implementational Issues

20. Numerical Methods for Rigorous Diffraction Theory

             20.1 Introduction

             20.2 BPM Based on Finite Differences

             20.3 Wide Angle BPM

             20.4 Finite Differences

             20.5 Finite Difference Time Domain Method

                    20.5.1 Yee's Algorithm

             20.6 Computer Experiments

             20.7 Fourier Modal Methods

Appendix A: The Impulse Function

Appendix B: Linear Vector Spaces

Appendix C: The Discrete-Time Fourier Transform, The Discrete Fourier Transform and The Fast Fourier Transform

References

Index

 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上