新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Chemical dynamics in condensed phases (凝聚相的化学动力学)
发布日期:2007-09-12  浏览

About this title: This text provides a uniform and consistent approach to diversified problems encountered in the study of dynamical processes in condensed phase molecular systems. Given the broad interdisciplinary aspect of this subject, the book focuses on three themes: coverage of needed background material, <br>in-depth introduction of methodologies, and analysis of several key applications. The uniform approach and common language used in all discussions help to develop general understanding and insight on condensed phases chemical dynamics. The applications discussed are among the most fundamental<br>processes that underlie physical, chemical and biological phenomena in complex systems.<br><br>The first part of the book starts with a general review of basic mathematical and physical methods (Chapter 1) and a few introductory chapters on quantum dynamics (Chapter 2), interaction of radiation and matter (Chapter 3) and basic properties of solids (chapter 4) and liquids (Chapter 5). In the<br>second part the text embarks on a broad coverage of the main methodological approaches. The central role of classical and quantum time correlation functions is emphasized in Chapter 6. The presentation of dynamical phenomena in complex systems as stochastic processes is discussed in Chapters 7 and<br>8. The basic theory of quantum relaxation phenomena is developed in Chapter 9, and carried on in Chapter 10 which introduces the density operator, its quantum evolution in Liouville space, and the concept of reduced equation of motions. The methodological part concludes with a discussion of linear<br>response theory in Chapter 11, and of the spin-boson model in chapter 12. Thethird part of the book applies the methodologies introduced earlier to several fundamental processes that underlie much of the dynamical behaviour of condensed phase molecular systems. Vibrational relaxation and<br>vibrational energy transfer (Chapter 13), Barrier crossing and diffusion controlled reactions (Chapter 14), solvation dynamics (Chapter 15), electron transfer in bulk solvents (Chapter 16) and at electrodes/electrolyte and metal/molecule/metal junctions (Chapter 17), and several processes pertaining<br>to molecular spectroscopy in condensed phases (Chapter 18) are the main subjects discussed in this part.

Table Of Contents

PART I BACKGROUND

             1 Review of some mathematical and physical subjects

                    1.1 Mathematical background

                           1.1.1 Random variables and probability distributions

                           1.1.2 Constrained extrema

                           1.1.3 Vector and fields

                           1.1.4 Continuity equation for the flow of conserved entities

                           1.1.5 Delta functions

                           1.1.6 Complex integration

                           1.1.7 Laplace transform

                           1.1.8 The Schwarz inequality

                    1.2 Classical mechanics

                           1.2.1 Classical equations of motion

                           1.2.2 Phase space, the classical distribution function, and the Liouville equation

                    1.3 Quantum mechanics

                    1.4 Thermodynamics and statistical mechanics

                           1.4.1 Thermodynamics

                           1.4.2 Statistical mechanics

                           1.4.3 Quantum distributions

                           1.4.4 Coarse graining

                    1.5 Physical observables as random variables

                           1.5.1 Origin of randomness in physical systems

                           1.5.2 Joint probabilities, conditional probabilities, and reduced descriptions

                           1.5.3 Random functions

                           1.5.4 Correlations

                           1.5.5 Diffusion

                    1.6 Electrostatics

                           1.6.1 Fundamental equations of electrostatics

                           1.6.2 Electrostatics in continuous dielectric media

                           1.6.3 Screening by mobile charges

             2 Quantum dynamics using the time-dependent Schr?inger equation

                    2.1 Formal solutions

                    2.2 An example: The two-level system

                    2.3 Time-dependent Hamiltonians

                    2.4 A two-level system in a time-dependent field

                    2.5 A digression on nuclear potential surfaces

                    2.6 Expressing the time evolution in terms of the Green's operator

                    2.7 Representations

                           2.7.1 The Schr?inger and Heisenberg representations

                           2.7.2 The interaction representation

                           2.7.3 Time-dependent perturbation theory

                    2.8 Quantum dynamics of the free particles

                           2.8.1 Free particle eigenfunctions

                           2.8.2 Free particle density of states

                           2.8.3 Time evolution of a one-dimensional free particle wavepacket

                           2.8.4 The quantum mechanical flux

                    2.9 Quantum dynamics of the harmonic oscillator

                           2.9.1 Elementary considerations

                           2.9.2 The raising/lowering operators formalism

                           2.9.3 The Heisenberg equations of motion

                           2.9.4 The shifted harmonic oscillator

                           2.9.5 Harmonic oscillator at thermal equilibrium

                    2.10 Tunneling

                           2.10.1 Tunneling through a square barrier

                           2.10.2 Some observations

                    2A Some operator identities

             3 An Overview of Quantum Electrodynamics and Matter?adiation Field Interaction

                    3.1 Introduction

                    3.2 The quantum radiation field

                           3.2.1 Classical electrodynamics

                           3.2.2 Quantum electrodynamics

                           3.2.3 Spontaneous emission

                    3A The radiation field and its interaction with matter

             4 Introduction to solids and their interfaces

                    4.1 Lattice periodicity

                    4.2 Lattice vibrations

                           4.2.1 Normal modes of harmonic systems

                           4.2.2 Simple harmonic crystal in one dimension

                           4.2.3 Density of modes

                           4.2.4 Phonons in higher dimensions and the heat capacity of solids

                    4.3 Electronic structure of solids

                           4.3.1 The free electron theory of metals: Energetics

                           4.3.2 The free electron theory of metals: Motion

                           4.3.3 Electronic structure of periodic solids: Bloch theory

                           4.3.4 The one-dimensional tight binding model

                           4.3.5 The nearly free particle model

                           4.3.6 Intermediate summary: Free electrons versus noninteracting electrons in a periodic potential

                           4.3.7 Further dynamical implications of the electronic band structure of solids

                           4.3.8 Semiconductors

                    4.4 The work function

                    4.5 Surface potential and screening

                           4.5.1 General considerations

                           4.5.2 The Thomas?ermi theory of screening by metallic electrons

                           4.5.3 Semiconductor interfaces

                           4.5.4 Interfacial potential distributions

             5 Introduction to liquids

                    5.1 Statistical mechanics of classical liquids

                    5.2 Time and ensemble average

                    5.3 Reduced configurational distribution functions

                    5.4 Observable implications of the pair correlation function

                           5.4.1 X-ray scattering

                           5.4.2 The average energy

                           5.4.3 Pressure

                    5.5 The potential of mean force and the reversible work theorem

                    5.6 The virial expansion?he second virial coefficient

Part II METHODS

             6 Time correlation functions

                    6.1 Stationary systems

                    6.2 Simple examples

                           6.2.1 The diffusion coefficient

                           6.2.2 Golden rule rates

                           6.2.3 Optical absorption lineshapes

                    6.3 Classical time correlation functions

                    6.4 Quantum time correlation functions

                    6.5 Harmonic reservoir

                           6.5.1 Classical bath

                           6.5.2 The spectral density

                           6.5.3 Quantum bath

                           6.5.4 Why are harmonic baths models useful?

             7 Introduction to stochastic processes

                    7.1 The nature of stochastic processes

                    7.2 Stochastic modeling of physical processes

                    7.3 The random walk problem

                           7.3.1 Time evolution

                           7.3.2 Moments

                           7.3.3 The probability distribution

                    7.4 Some concepts from the general theory of stochastic processes

                           7.4.1 Distributions and correlation functions

                           7.4.2 Markovian stochastic processes

                           7.4.3 Gaussian stochastic processes

                           7.4.4 A digression on cumulant expansions

                    7.5 Harmonic analysis

                           7.5.1 The power spectrum

                           7.5.2 The Wiener?hintchine theorem

                           7.5.3 Application to absorption

                           7.5.4 The power spectrum of a randomly modulated harmonic oscillator

                    7A Moments of the Gaussian distribution

                    7B Proof of Eqs (7.64) and (7.65)

                    7C Cumulant expansions

                    7D Proof of the Wiener?hintchine theorem

             8 Stochastic equations of motion

                    8.1 Introduction

                    8.2 The Langevin equation

                           8.2.1 General considerations

                           8.2.2 The high friction limit

                           8.2.3 Harmonic analysis of the Langevin equation

                           8.2.4 The absorption lineshape of a harmonic oscillator

                           8.2.5 Derivation of the Langevin equation from a microscopic model

                           8.2.6 The generalized Langevin equation

                    8.3 Master equations

                           8.3.1 The random walk problem revisited

                           8.3.2 Chemical kinetics

                           8.3.3 The relaxation of a system of harmonic oscillators

                    8.4 The Fokker?lanck equation

                           8.4.1 A simple example

                           8.4.2 The probability flux

                           8.4.3 Derivation of the Fokker?lanck equation from the Chapman?olmogorov equation

                           8.4.4 Derivation of the Smoluchowski equation from the Langevin equation: The overdamped limit

                           8.4.5 Derivation of the Fokker?lanck equation from the Langevin equation

                           8.4.6 The multidimensional Fokker?lanck equation

                    8.5 Passage time distributions and the mean first passage time

                    8A Obtaining the Fokker?lanck equation from the Chapman?olmogorov equation

                    8B Obtaining the Smoluchowski equation from the overdamped Langevin equation

                    8C Derivation of the Fokker?lanck equation from the Langevin equation

             9 Introduction to quantum relaxation processes

                    9.1 A simple quantum-mechanical model for relaxation

                    9.2 The origin of irreversibility

                           9.2.1 Irreversibility reflects restricted observation

                           9.2.2 Relaxation in isolated molecules

                           9.2.3 Spontaneous emission

                           9.2.4 Preparation of the initial state

                    9.3 The effect of relaxation on absorption lineshapes

                    9.4 Relaxation of a quantum harmonic oscillator

                    9.5 Quantum mechanics of steady states

                           9.5.1 Quantum description of steady-state processes

                           9.5.2 Steady-state absorption

                           9.5.3 Resonance tunneling

                    9A Using projection operators

                    9B Evaluation of the absorption lineshape for the model of Figs 9.2 and 9.3

                    9C Resonance tunneling in three dimensions

       10 Quantum mechanical density operator

                    10.1 The density operator and the quantum Liouville equation

                           10.1.1 The density matrix for a pure system

                           10.1.2 Statistical mixtures

                           10.1.3 Representations

                           10.1.4 Coherences

                           10.1.5 Thermodynamic equilibrium

                    10.2 An example: The time evolution of a two-level system in the density matrix formalism

                    10.3 Reduced descriptions

                           10.3.1 General considerations

                           10.3.2 A simple example the quantum mechanical basis for macroscopic rate equations

                    10.4 Time evolution equations for reduced density operators: The quantum master equation

                           10.4.1 Using projection operators

                           10.4.2 The Nakajima?wanzig equation

                           10.4.3 Derivation of the quantum master equation using the thermal projector

                           10.4.4 The quantum master equation in the interaction representation

                           10,4.5 The quantum master equation in the Schr?inger representation

                           10.4.6 A pause for reflection

                           10.4.7 System-states representation

                           10.4.8 The Markovian limit the Redfield equation

                           10.4.9 Implications of the Redfield equation

                           10.4.10 Some general issues

                    10.5 The two-level system revisited

                           10.5.1 The two-level system in a thermal environment

                           10.5.2 The optically driven two-level system in a thermal environment the Bloch equations

                    10A Analogy of a coupled 2-level system to a spin 2system in a magnetic field

       11 Linear response theory

                    11.1 Classical linear response theory

                           11.1.1 Static response

                           11.1.2 Relaxation

                           11.1.3 Dynamic response

                    11.2 Quantum linear response theory

                           11.2.1 Static quantum response

                           11.2.2 Dynamic quantum response

                           11.2.3 Causality and the Kramers?ronig relations

                           11.2.4 Examples: mobility, conductivity, and diffusion

                    11A The Kubo identity

       12 The Spin?oson Model

                    12.1 Introduction

                    12.2 The model

                    12.3 The polaron transformation

                           12.3.1 The Born Oppenheimer picture

                    12.4 Golden-rule transition rates

                           12.4.1 The decay of an initially prepared level

                           12.4.2 The thermally averaged rate

                           12.4.3 Evaluation of rates

                    12.5 Transition between molecular electronic states

                           12.5.1 The optical absorption lineshape

                           12.5.2 Electronic relaxation of excited molecules

                           12.5.3 The weak coupling limit and the energy gap law

                           12.5.4 The thermal activation/potential-crossing limit

                           12.5.5 Spin?attice relaxation

                    12.6 Beyond the golden rule

Part III APPLICATIONS

       13 Vibrational energy relaxation

                    13.1 General observations

                    13.2 Construction of a model Hamiltonian

                    13.3 The vibrational relaxation rate

                    13.4 Evaluation of vibrational relaxation rates

                           13.4.1 The bilinear interaction model

                           13.4.2 Nonlinear interaction models

                           13.4.3 The independent binary collision (IBC) model

                    13.5 Multi-phonon theory of vibrational relaxation

                    13.6 Effect of supporting modes

                    13.7 Numerical simulations of vibrational relaxation

                    13.8 Concluding remarks

       14 Chemical reactions in condensed phases

                    14.1 Introduction

                    14.2 Unimolecular reactions

                    14.3 Transition state theory

                           14.3.1 Foundations of TST

                           14.3.2 Transition state rate of escape from a one-dimensional well

                           14.3.3 Transition rate for a multidimensional system

                           14.3.4 Some observations

                           14.3.5 TST for nonadiabatic transitions

                           14.3.6 TST with tunneling

                    14.4 Dynamical effects in barrier crossing?he Kramers model

                           14.4.1 Escape from a one-dimensional well

                           14.4.2 The overdamped case

                           14.4.3 Moderate-to-large damping

                           14.4.4 The low damping limit

                    14.5 Observations and extensions

                           14.5.1 Implications and shortcomings of the Kramers theory

                           14.5.2 Non-Markovian effects

                           14.5.3 The normal mode representation

                    14.6 Some experimental observations

                    14.7 Numerical simulation of barrier crossing

                    14.8 Diffusion-controlled reactions

                    14A Solution of Eqs (14.62) and (14.63)

                    14B Derivation of the energy Smoluchowski equation

       15 Solvation dynamics

                    15.1 Dielectric solvation

                    15.2 Solvation in a continuum dielectric environment

                           15.2.1 General observations

                           15.2.2 Dielectric relaxation and the Debye model

                    15.3 Linear response theory of solvation

                    15.4 More aspects of solvation dynamics

                    15.5 Quantum solvation

       16 Electron transfer processes

                    16.1 Introduction

                    16.2 A primitive model

                    16.3 Continuum dielectric theory of electron transfer processes

                           16.3.1 The problem

                           16.3.2 Equilibrium electrostatics

                           16.3.3 Transition assisted by dielectric fluctuations

                           16.3.4 Thermodynamics with restrictions

                           16.3.5 Dielectric fluctuations

                           16.3.6 Energetics of electron transfer between two ionic centers

                           16.3.7 The electron transfer rate

                    16.4 A molecular theory of the nonadiabatic electron transfer rate

                    16.5 Comparison with experimental results

                    16.6 Solvent-controlled electron transfer dynamics

                    16.7 A general expression for the dielectric reorganization energy

                    16.8 The Marcus parabolas

                    16.9 Harmonic field representation of dielectric response

                    16.10 The nonadiabatic coupling

                    16.11 The distance dependence of electron transfer rates

                    16.12 Bridge-mediated long-range electron transfer

                    16.13 Electron tranport by hopping

                    16.14 Proton transfer

                    16A Derivation of the Mulliken?ush formula

       17 Electron transfer and transmission at molecule?etal and molecule?emiconductor interfaces

                    17.1 Electrochemical electron transfer

                           17.1.1 Introduction

                           17.1.2 The electrochemical measurement

                           17.1.3 The electron transfer process

                           17.1.4 The nuclear reorganization

                           17.1.5 Dependence on the electrode potential: Tafel plots

                           17.1.6 Electron transfer at the semiconductor?lectrolyte interface

                    17.2 Molecular conduction

                           17.2.1 Electronic structure models of molecular conduction

                           17.2.2 Conduction of a molecular junction

                           17.2.3 The bias potential

                           17.2.4 The one-level bridge model

                           17.2.5 A bridge with several independent levels

                           17.2.6 Experimental statistics

                           17.2.7 The tight-binding bridge model

       18 Spectroscopy

                    18.1 Introduction

                    18.2 Molecular spectroscopy in the dressed-state picture

                    18.3 Resonance Raman scattering

                    18.4 Resonance energy transfer

                    18.5 Thermal relaxation and dephasing

                           18.5.1 The Bloch equations

                           18.5.2 Relaxation of a prepared state

                           18.5.3 Dephasing (decoherence)

                           18.5.4 The absorption lineshape

                           18.5.5 Homogeneous and inhomogeneous broadening

                           18.5.6 Motional narrowing

                           18.5.7 Thermal effects in resonance Raman scattering

                           18.5.8 A case study: Resonance Raman scattering and fluorescence from Azulene in a Naphtalene matrix

                    18.6 Probing inhomogeneous bands

                           18.6.1 Hole burning spectroscopy

                           18.6.2 Photon echoes

                           18.6.3 Single molecule spectroscopy

                    18.7 Optical response functions

                           18.7.1 The Hamiltonian

                           18.7.2 Response functions at the single molecule level

                           18.7.3 Many body response theory

                           18.7.4 Independent particles

                           18.7.5 Linear response

                           18.7.6 Linear response theory of propagation and absorption

                    18A Steady-state solution of Eqs (18.58): the Raman scattering flux

Index

 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上