新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
微分方程数值分析基础教程
发布日期:2007-04-18  浏览

[内容提要]

    数值分析向世界展现了它的不同面孔。对数学家而言,它是带有应用性的纯正的数学理论。对科技人员和工程师而言,它是实用的应用性学科,是建模工艺中典型技能的一部分。对计算机科学家而言,它是关于计算机结构与实数运算的算法之间相互影响的理论。正是这些观点间的不同形成了写这本书的动力。本书严格论述了常微分方程和偏微分方程数值分析的基本理论。出发点是数学的,但本书尽力保持在理论上、算法上和应用上的平衡。
具体地,本书包含求常微分方程的数值解的多步法和龙格-库塔方法;泊松方程的有限差分法和有限元法;各种解大型稀疏代数方程组的算法;解双曲型和抛物型微分方程的数值方法以及分析的技巧。本书的附录是一些数学知识点的简要备份。
英国剑桥大学教授Iserles博士注重基本知识:从最基本原理推得方法,用各种数学技术对这些方法进行分析,不时讨论这些方法的实现和应用。他这样做,使得读者能在不忽略应用的情况下对这门课有理论上的理解。这样就形成了一本在数学上诚实和严格的教材,为读者在常微分方程和偏微分方程方面提供了很多技巧。

 [目录]

  第Ⅰ部分常微分方程组
 第1章 欧拉法及其简单扩展
  1.1常微分方程组与Lipschitz条件
  1.2欧拉法
  1.3梯形法
  1.4θ方法
  注释与参考文献
  练习
 第2章 多步法
  2.1Adams方法
  2.2多步法的阶与收敛性
  2.3向后微分公式
  注释与参考文献
  练习
 第3章 龙格?库塔法
  3.1高斯求积
  3.2显式龙格?库塔
  3.3隐式龙格?库塔格式
  3.4配置法和隐式龙格?库塔法
  注释与参考文献
  练习
 第4章 刚性方程组
  4.1什么是刚性常微分方程组
  4.2线性稳定域和A稳定性
  4.3龙格?库塔法的A稳定性
  4.4多步法的A稳定性
  注释与参考文献
  练习
 第5章 误差控制
  5.1数值软件与数值数学
  5.2Milne策略
  5.3嵌入龙格?库塔法
  注释与参考文献
  练习
 第6章 非线性代数方程组
  6.1函数迭代
  6.2Newton?Raphson算法及其改进
  6.3迭代的开始和终止
  注释与参考文献
  练习
第Ⅱ部分泊 松方程
 第7章 有限差分格式
  7.1有限差分
  7.2Δ2u=f的五点公式
  7.3求解Δ2u=f的高阶方法
  注释与参考文献
  练习
 第8章 有限元方法
  8.1两点边值问题
  8.2有限元理论概述
  8.3泊松方程
  注释与参考文献
  练习
 第9章 稀疏线性方程组的高斯消元法
  9.1带状方程组
  9.2矩阵的图和完全Cholesky 分解
  注释与参考文献
  练习
 第10章 稀疏线性方程组的迭代法
  10.1线性单步定常格式
  10.2经典迭代方法
  10.3逐次超松弛法的收敛性
  10.4泊松方程
  注释与参考文献
  练习
 第11章 多重网格技巧
  11.1一个说明
  11.2基本多重网格技巧
  11.3完整多重网格技巧
  11.4多重网格下的泊松方程
  注释与参考文献
  练习
 第12章 快速泊松求解器
  12.1TST矩阵和Hockney方法
  12.2快速傅里叶变换
  12.3圆盘中的快速泊松求解器
  注释与参考文献
  练习
第Ⅲ部分发展型偏微分方程

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上