新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Atomic Structure Prediction of Nanostructures, Clusters and Surfaces
发布日期:2015-12-18  浏览

Atomic Structure Prediction of Nanostructures, Clusters and Surfaces

[Book Description]

This work fills the gap for a comprehensive reference conveying the developments in global optimization of atomic structures using genetic algorithms. Over the last few decades, such algorithms based on mimicking the processes of natural evolution have made their way from computer science disciplines to solid states physics and chemistry, where they have demonstrated their versatility and predictive power for many materials. Following an introduction and historical perspective, the text moves on to provide an in-depth description of the algorithm before describing its applications to crystal structure prediction, atomic clusters, surface and interface reconstructions, and quasi one-dimensional nanostructures. The final chapters provide a brief account of other methods for atomic structure optimization and perspectives on the future of the field.

[Table of Contents]
Preface                                            ix
    1 The Challenge of Predicting Atomic           1  (10)
    Structure
      1.1 Evolution: Reality and Algorithms        2  (2)
      1.2 Brief Historical Perspective             4  (2)
      1.3 Scope and Organization of This Book      6  (5)
        References                                 7  (4)
    2 The Genetic Algorithm in Real-Space          11 (26)
    Representation
      2.1 Structure Determination Problems         12 (11)
        2.1.1 Cluster Structure                    12 (4)
        2.1.2 Crystal Structure Prediction         16 (3)
        2.1.3 Surface Reconstructions              19 (2)
        2.1.4 Range of Applications                21 (2)
      2.2 General Procedure                        23 (1)
      2.3 Selection of Parent Structures           24 (2)
      2.4 Crossover Operations                     26 (4)
        2.4.1 Cut-and-Splice Crossover in Real     27 (1)
        Space
        2.4.2 Crossovers and Periodic Boundary     28 (2)
        Conditions
      2.5 Mutations                                30 (3)
        2.5.1 Zero-Penalty Mutations               31 (1)
        2.5.2 Regular Mutations                    31 (2)
      2.6 Updating the Genetic Pool: Survival      33 (1)
      of the Fittest
      2.7 Stopping Criteria and Subsequent         34 (3)
      Analysis
        References                                 35 (2)
    3 Crystal Structure Prediction                 37 (34)
      3.1 Complexity of the Energy Landscape       38 (2)
      3.2 Improving the Efficiency of GA           40 (1)
      3.3 Interaction Models                       41 (3)
        3.3.1 Classical Potentials                 41 (1)
        3.3.2 Ab Initio Methods                    42 (1)
        3.3.3 Adaptive Classical Potentials        42 (2)
      3.4 Creating the Generation-Zero             44 (1)
      Structures
      3.5 Assessing Structural Diversity of the    45 (3)
      Pool
        3.5.1 Fingerprint Functions                45 (2)
        3.5.2 General Features of the PES          47 (1)
      3.6 Variable Composition                     48 (3)
      3.7 Examples                                 51 (20)
        3.7.1 Identification of Post-Pyrite        51 (1)
        Phase Transitions
        3.7.1.1 Computational Details              52 (1)
        3.7.1.2 Results and Discussion             52 (5)
        3.7.2 Ultrahigh-Pressure Phases of Ice     57 (1)
        3.7.2.1 Computational Details              58 (1)
        3.7.2.2 Results and Discussion             59 (4)
        3.7.3 Structure and Magnetic Properties    63 (1)
        of Fe--Co Alloys
        3.7.3.1 Computational Details              63 (1)
        3.7.3.2 Results and Discussion             64 (3)
        References                                 67 (4)
    4 Optimization of Atomic Clusters              71 (16)
      4.1 Alloys, Oxides, and Other Cluster        71 (2)
      Materials
      4.2 Optimization of Substrate-Supported      73 (8)
      Clusters via GA
      4.3 GA Solution to the Thomson Problem       81 (6)
        References                                 85 (2)
    5 Atomic Structure of Surfaces, Interfaces,    87 (62)
    and Nanowires
      5.1 Reconstruction of Semiconductor          88 (26)
      Surfaces as a Problem of Global
      Optimization
        5.1.1 The Genetic Algorithm for Surface    89 (1)
        Reconstructions: the Case of Si(105)
        5.1.1.1 Computational Details for          89 (2)
        Si(105)
        5.1.1.2 Results for Si(105)                91 (4)
        5.1.2 New Reconstructions for a Related    95 (4)
        Surface, Si(103)
        5.1.3 Model Reconstructions for            99 (2)
        Si(337), an Unstable Surface: GA
        Followed by DFT Relaxations
        5.1.3.1 Results for Si(337) Models         101(5)
        5.1.3.2 Discussion                         106(1)
        5.1.4 Atomic Structure of Steps on         107(1)
        High-Index Surfaces
        5.1.4.1 Supercell Geometry and             107(3)
        Algorithm Details
        5.1.4.2 Results for Step Structures on     110(4)
        Si(114)
      5.2 Genetic Algorithm for Interface          114(9)
      Structures
        5.2.1 GA for Grain Boundary Structure      115(1)
        Optimization
        5.2.2 Structures Generated by GA           116(5)
        5.2.3 Grain Boundary Energy Calculations   121(2)
      5.3 Nanowire and Nanotube Structures via     123(26)
      GA Optimization
        5.3.1 Passivated Silicon Nanowires         123(7)
        5.3.2 One-Dimensional Nanostructures       130(1)
        under Radial Confinement
        5.3.2.1 Introduction                       131(1)
        5.3.2.2 Description of the Algorithm       132(3)
        5.3.2.3 Results for Prototype Nanotubes    135(4)
        5.3.2.4 Discussion                         139(5)
        5.3.2.5 Concluding Remarks                 144(1)
        References                                 144(5)
    6 Other Methodologies for Investigating        149(38)
    Atomic Structure
      6.1 Parallel Tempering Monte Carlo           151(7)
      Annealing
        6.1.1 General Considerations               151(2)
        6.1.2 Advantages of the Parallel           153(1)
        Tempering Algorithm as a Global
        Optimizer
        6.1.3 Description of the Algorithm         154(4)
      6.2 Basin Hopping Monte Carlo                158(2)
      6.3 Optimization via Minima Hopping          160(3)
      6.4 The Metadynamics Approach                163(2)
      6.5 Comparative Studies between GA and       165(22)
      Other Structural Optimization Techniques
        6.5.1 Reconstructions of Si(114):          165(1)
        Comparison between GA and PTMC
        6.5.1.1 PTMC Results                       166(1)
        6.5.1.2 GA Results                         167(1)
        6.5.1.3 DFT Calculations                   167(2)
        6.5.1.4 Structural Models for Si(114)      169(5)
        6.5.1.5 Discussion                         174(1)
        6.5.1.6 Concluding Remarks                 175(1)
        6.5.2 Crystal Structure Prediction:        175(1)
        Comparison between GA and MH
        6.5.2.1 GA Applied to AlxSc1-x Alloys      176(4)
        6.5.2.2 Boron                              180(2)
        6.5.2.3 Minima Hopping                     182(3)
        References                                 185(2)
    7 Perspectives and Outlook                     187(104)
      7.1 Expansion through the Community          187(100)
      7.2 Future Algorithm Developments            287(1)
      7.3 Problems to Tackle - Discovery versus    288(3)
      Design
Index                                              291
 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上