Written by the leading experts in the field, this book will provide a valuable, current account of the advances in the measurement and prediction of transport properties that have occurred over the last twenty years. Critical to industry, these properties are fundamental to, for example, the development of fossil fuels, carbon sequestration and alternative energy sources. This unique and comprehensive account will provide the experimental and theoretical background of near-equilibrium transport properties which provide the background when investigating industrial applications. Coverage includes new experimental techniques and how existing techniques have developed, new fluids eg molten metals, dense fluids, and critical enhancements of transport properties of pure substances. Practitioners and researchers in chemistry and engineering will benefit from this state of the art record of recent advances in the field of transport properties.
Chapter 1 Acoustic Techniques for Measuring 1 (18)
Transport Properties of Gases
Keith A. Gillis
Michael R. Moldover
1.1 Introduction: Acoustic Measurements of 1 (1)
Gas Properties
1.2 Shear Viscosity Measurements: The 2 (9)
Greenspan Viscometer
1.2.1 Description 2 (3)
1.2.2 Basic Theory 5 (3)
1.2.3 Experimental Results 8 (3)
1.3 Thermal Conductivity 11 (3)
1.4 Bulk Viscosity Measurements Near the 14 (3)
Liquid-Vapor Critical Point
References 17 (2)
Chapter 2 Optical Methods 19 (56)
Andreas Paul Fr?ba
Stefan Will
Yuji Nagasaka
Jochen Winkelmann
Simone Wiegand
Werner K?hler
2.1 Introduction to Optical Methods 19 (3)
2.2 Light Scattering by Surface Waves - 22 (14)
Surface Light Scattering
2.2.1 Introduction 22 (1)
2.2.2 Basic Principles 23 (4)
2.2.3 Experimental 27 (1)
2.2.4 Measurement Examples and Data 28 (3)
Evaluation
2.2.5 Fields of Application 31 (3)
2.2.6 Conclusion 34 (2)
2.3 Laser-induced Capillary Wave Technique 36 (7)
2.3.1 Introduction 36 (1)
2.3.2 Principle of Laser-induced 36 (2)
Capillary Wave Technique
2.3.3 Experimental Apparatus 38 (1)
2.3.4 Viscosity Measurement of Newtonian 39 (1)
Liquids
2.3.5 Applications to Milk Fermenting to 40 (3)
Yogurt and Whole Blood
2.4 Near-critical Light-scattering 43 (8)
Techniques
2.4.1 Introduction 43 (1)
2.4.2 Experimental Methods and Results 44 (3)
2.4.3 Theoretical Interpretation 47 (2)
2.4.4 Comparison of DLS-results with 49 (2)
Taylor Dispersion Measurements
2.5 Soret Coefficients of Binary Mixtures 51 (9)
2.5.1 Introduction 51 (1)
2.5.2 Experimental Methods 51 (7)
2.5.3 Conclusion 58 (2)
2.6 Soret Coefficients of Ternary Mixtures 60 (8)
2.6.1 Introduction 60 (1)
2.6.2 Theory 60 (2)
2.6.3 Experimental Techniques 62 (5)
2.6.4 Concluding Remarks 67 (1)
References 68 (7)
Chapter 3 NMR Diffusion Measurements 75 (21)
William S. Price
3.1 Introduction and Scope 75 (1)
3.2 NMR Relaxation Approach 76 (1)
3.3 Magnetic Gradient Based Approach 77 (15)
3.3.1 Theory - The Ideal Case 77 (5)
3.3.2 Complications 82 (6)
3.3.3 Common Pulse Sequences 88 (2)
3.3.4 Data Analysis 90 (2)
References 92 (4)
Chapter 4 Viscometers 96 (36)
Agilio A.H. P疆ua
Daisuke Tomida
Chiaki Yokoyama
Evan H. Abramson
Robert F. Berg
Eric F. May
Michael R. Moldover
Arno Laesecke
4.1 Vibrating-wire Viscometer 96 (7)
4.1.1 Principle of Operation 97 (3)
4.1.2 Absolute versus Relative 100(1)
Measurements
4.1.3 High-viscosity Standards 101(1)
4.1.4 Expanding the Limits: Complex 102(1)
Fluids and Online Measurements
4.2 Falling Body Viscometer Developments: 103(5)
Small Spheres
4.2.1 Falling Ball Viscometer 103(3)
4.2.2 Falling Sinker-type Viscometer 106(2)
4.3 Rolling Sphere Viscometry in a Diamond 108(6)
Anvil Cell
4.3.1 Introduction 108(1)
4.3.2 The Rolling Sphere 108(3)
4.3.3 Error 111(1)
4.3.4 Experimental Details 112(2)
4.4 Gas Viscosity-ratio Measurements with 114(7)
Two-capillary Viscometers
4.4.1 Introduction 114(1)
4.4.2 Single-capillary Viscometers 115(2)
4.4.3 Two-capillary Viscometers 117(4)
4.5 Sealed Gravitational Capillary 121(5)
Viscometers for Volatile Liquids
4.5.1 Introduction 121(1)
4.5.2 Instruments 121(3)
4.5.3 Vapor Buoyancy Correction 124(1)
4.5.4 Radial Acceleration Correction 125(1)
References 126(6)
Chapter 5 Thermal Conductivity and Diffusivity 132(41)
Jiangtao Wu
Marc J. Assael
Konstantinos D. Antoniadis
Chinhua Wang
Andreas Mandelis
Jingpei Hu
Rui Tai
R. Michael Banish
J. Iwan D. Alexander
Kenneth R. Harris
5.1 The History of the Transient Hot-Wire 132(6)
Technique
5.1.1 The Period from 1780 to 1970 133(2)
5.1.2 From 1971 to Today 135(3)
5.2 Photoacoustic and Photothermal Methods 138(9)
and Tables of Thermophysical Property
Measurements
5.3 Reduced Algorithms for Diffusivity 147(10)
Measurements
5.3.1 Introduction 147(2)
5.3.2 Mathematical Formulations 149(8)
Acknowledgements 157(1)
5.4 Diffusion Techniques for High Pressure 158(7)
and Low and High Temperatures
5.4.1 Introduction 158(1)
5.4.2 Mutual Diffusion Techniques 159(4)
5.4.3 Self-diffusion 163(2)
References 165(8)
Chapter 6 New Fluids 173(53)
William A. Wakeham
Ivan Egg
J?rgen Brillo
Yuji Nagasaka
Marc J. Assael
Joan F. Brennecke
Marjorie Massel
Chaojun Shi
6.1 Introduction to New Fluids 173(3)
6.2 Molten Metals and Microgravity 176(12)
6.2.1 Introduction 176(1)
6.2.2 Thermophysical Properties 177(10)
6.2.3 Summary and Outlook 187(1)
6.3 Forced Rayleigh Scattering Application 188(6)
to High Temperature Thermal Diffusivity of
Molten Salts
6.3.1 Introduction 188(1)
6.3.2 Principle of Forced Rayleigh 189(1)
Scattering Technique and Experimental
Apparatus for Molten Alkali Halides
6.3.3 Thermal Diffusivity Measurement of 189(3)
Molten Alkali Halides
6.3.4 Experimental Apparatus Using CO2 192(1)
Laser for Molten Carbonates
6.3.5 Thermal Diffusivity Measurement of 192(2)
Molten Carbonates
6.4 Surface Light Scattering Technique for 194(6)
Viscosity and Surface Tension of Molten
Silicon and Molten LiNbO3
6.4.1 Introduction 194(1)
6.4.2 Principle of Surface Light 194(1)
Scattering Technique
6.4.3 Experimental Apparatus 195(1)
6.4.4 Interfacial Tension Measurement of 196(1)
Molten Silicon
6.4.5 Interfacial Tension and Viscosity 197(3)
Measurement of Molten LiNbO3
6.5 Application of the Transient Hot-Wire 200(10)
Technique to Melts
6.5.1 Theoretical 200(1)
6.5.2 Working Equations 201(2)
6.5.3 Practical Design 203(2)
6.5.4 Instrument Assembly 205(1)
6.5.5 Automatic Bridge 205(1)
6.5.6 Derivation of Thermal Conductivity 206(2)
6.5.7 Uncertainty 208(1)
6.5.8 Selected Measurements 208(1)
6.5.9 Conclusions 209(1)
6.6 Ionic Liquids 210(9)
6.6.1 Introduction 210(1)
6.6.2 Experimental Techniques for 210(1)
Viscosity, Thermal Conductivity and
Electrical Conductivity
6.6.3 Viscosity 211(3)
6.6.4 Thermal Conductivity 214(2)
6.6.5 Electrical Conductivity 216(2)
6.6.6 Conclusions 218(1)
References 219(7)
Chapter 7 Dilute Gases 226(27)
Eckard Bich
James B. Mehl
Robert Hellmann
Velisa Vesovic
7.1 Monatomic Gases 226(8)
7.1.1 Introduction 226(2)
7.1.2 Transport Properties of Pure Gases 228(2)
- Helium and Argon
7.1.3 Transport Properties of Gas 230(2)
Mixtures - Helium-Krypton Mixture
7.1.4 Summary and Outlook 232(2)
7.2 Polyatomic Gases 234(13)
7.2.1 Introduction 234(3)
7.2.2 Transport Properties of Hydrogen 237(1)
7.2.3 Transport Properties of Non-polar 238(2)
Gases - Methane
7.2.4 Transport Properties of Polar Gases 240(2)
- Water Vapour
7.2.5 General Observations 242(4)
7.2.6 Summary and Outlook 246(1)
References 247(6)
Chapter 8 Dense Fluids: Viscosity 253(35)
Velisa Vesovic
J.P. Martin Trusler
Marc J. Assael
Nicolas Riesco
Sergio E. Qui?ones-Cisneros
8.1 Introduction 253(3)
8.2 The Vo Scheme 256(7)
8.2.1 The Assael and Dymond Scheme 256(2)
8.2.2 The Extended Assael and Dymond 258(3)
Scheme
8.2.3 Summary and Outlook 261(2)
8.3 The Viscosity of Dense Mixtures: The 263(12)
Vesovic-Wakeham Method
8.3.1 Introduction 263(4)
8.3.2 Mixture Viscosities 267(5)
8.3.3 Summary and Outlook 272(2)
Acknowledgements 274(1)
8.4 The Friction Theory for Viscosity 275(9)
Modelling
8.4.1 Basic Concepts 275(1)
8.4.2 Applications of the Friction Theory 276(7)
8.4.3 Summary and Outlook 283(1)
References 284(4)
Chapter 9 Dense Fluids: Other Developments 288(49)
Horacio R. Corti
M. Paula Longinotti
Josefa Fern疣dez
Enriqueta R. L?pez
Alois W?rger
9.1 Introduction 288(2)
9.2 Transport in Supercooled Liquids 290(17)
9.2.1 Supercooled Liquids: 290(1)
Crystallization vs. Vitrification
9.2.2 Relaxation Dynamics of Glass 291(2)
Forming Liquids: α- and
β-Relaxations
9.2.3 Structural Relaxation and 293(1)
Viscosity: Strong and Fragile Liquids
9.2.4 Theories for the Behavior of the 294(2)
Viscosity of Supercooled Liquids
9.2.5 Mass and Charge Transport in 296(2)
Supercooled Liquids
9.2.6 Diffusion-Viscosity Decoupling 298(3)
9.2.7 Diffusivity and Viscosity of 301(2)
Supercooled Water
9.2.8 Mobility-Viscosity Decoupling in 303(2)
Water Solutions
9.2.9 Summary and Outlook 305(2)
9.3 Density Scaling Approach 307(11)
9.3.1 Introduction 307(1)
9.3.2 Thermodynamic Scaling and Models 308(5)
9.3.3 Scaling of Different Transport 313(3)
Properties
9.3.4 Summary and Outlook 316(1)
Acknowledgements 317(1)
9.4 Thermal Diffusion in Binary Mixtures 318(12)
9.4.1 Introduction 318(1)
9.4.2 Non-equilibrium Thermodynamics 319(1)
9.4.3 Thermal Diffusion Coefficient in 320(2)
the Absence of Viscous Effects
9.4.4 Mixtures of Alkanes 322(1)
9.4.5 Composition Dependence 323(2)
9.4.6 Isotope Effect 325(2)
9.4.7 Viscous Effects 327(1)
9.4.8 Thermal Diffusion in Electrolyte 328(1)
Solutions
9.4.9 Outlook and Open Problems 329(1)
Acknowledgements 330(1)
References 330(7)
Chapter 10 Fluids near Critical Points 337(25)
Jan V. Sengers
Richard A. Perkins
10.1 Introduction 337(1)
10.2 Wave-number Dependence of Diffusivity 338(3)
near the Critical Point
10.3 Non-asymptotic Critical Behavior of 341(6)
Thermal Conductivity of One-component Fluids
10.3.1 Olchowy-Sengers Approximation 342(3)
10.3.2 Kiselev-Kulikov Approximation 345(1)
10.3.3 Ferrell Approximation 346(1)
10.4 Non-asymptotic Critical Behavior of 347(3)
Viscosity of One-component Fluids
10.5 Asymptotic Critical Behavior of 350(3)
Transport Properties of Binary Fluid
Mixtures
10.6 Non-asymptotic Critical Behavior of 353(2)
Thermal Conductivity of Binary Fluid
Mixtures
10.7 Discussion 355(1)
10.A Appendix: Critical Exponents and 356(1)
Critical Amplitudes
Acknowledgement 357(1)
References 357(5)
Chapter 11 Computer Simulations 362(25)
Guillaume Galliero
11.1 Introduction 362(1)
11.2 Classical Molecular Dynamics 363(3)
11.2.1 Molecular Models 363(2)
11.2.2 Main Principles 365(1)
11.3 Computing Transport Properties 366(3)
11.3.1 Equilibrium Approach 367(1)
11.3.2 Non-equilibrium Approaches 368(1)
11.4 Transport Properties of Model Fluids 369(7)
11.4.1 Pure Fluids Composed of Spheres 370(3)
11.4.2 Mixtures Composed of Spheres 373(2)
11.4.3 Polyatomic Fluids 375(1)
11.5 Transport Properties of Realistic 376(4)
Fluids
11.5.1 Simple Fluids 377(2)
11.5.2 Molecular Fluids379(1)
11.5.3 Hydrogen Bonding and Ionic Fluids 380(1)
11.6 Summary and Outlook 380(1)
Acknowledgments 381(1)
References 382(5)
Subject Index 387