新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Multivariate Bonferroni-type Inequalities : Theory and Applications
发布日期:2015-12-11  浏览

Multivariate Bonferroni-type Inequalities : Theory and Applications

[Book Description]

Multivariate Bonferroni-Type Inequalitiespresents a systematic account of research discoveries on multivariate Bonferroni-type inequalities published in the past decade. The emergence of new bounding approaches pushes the conventional definitions of optimal inequalities and demands new insights into linear and Frechet optimality. The book explores these advances in bounding techniques with corresponding innovative applications. It presents the method of linear programming for multivariate bounds, multivariate hybrid bounds, sub-Markovian bounds, and bounds using Hamilton circuits. The first half of the book describes basic concepts and methods in probability inequalities. The author introduces the classification of univariate and multivariate bounds with optimality, discusses multivariate bounds using indicator functions, and explores linear programming for bivariate upper and lower bounds. The second half addresses bounding results and applications of multivariate Bonferroni-type inequalities.The book shows how to construct new multiple testing procedures with probability upper bounds and goes beyond bivariate upper bounds by considering vectorized upper and hybrid bounds. It presents an optimization algorithm for bivariate and multivariate lower bounds and covers vectorized high-dimensional lower bounds with refinements, such as Hamilton-type circuits and sub-Markovian events. The book concludes with applications of probability inequalities in molecular cancer therapy, big data analysis, and more.

[Table of Contents]
 
List of Figures                                    xi
List of Tables                                     xiii
Preface                                            xv
1 Introduction                                     1   (26)
  1.1 Multiple Extreme Values                      2   (4)
    1.1.1 Evaluating the Risk of Multiple          2   (3)
    Disasters
    1.1.2 Multivariate Cumulative Distributions    5   (1)
  1.2 Minimum Effective Dose                       6   (7)
    1.2.1 Minimum Effective Dose of MOTRIN         6   (4)
    1.2.2 Minimum Effective Dose without           10  (1)
    Normality
    1.2.3 Inequality Methods for Behren-Fisher     11  (1)
    Problem
    1.2.4 Adjusting Multiplicity for Two or        12  (1)
    More Substitutable Endpoints
  1.3 System Reliability                           13  (5)
    1.3.1 Basic Systems                            13  (2)
    1.3.2 Composite Systems                        15  (3)
  1.4 Education Reform and Theoretical Windows     18  (4)
    1.4.1 Learning Outcomes of Different           19  (1)
    Pedagogies
    1.4.2 Therapeutic Windows of a Drug            20  (2)
  1.5 Ruin Probability and Multiple Premiums       22  (2)
  1.6 Martingale Inequality and Asset Portfolio    24  (3)
2 Fundamentals                                     27  (56)
  2.1 Univariate Bonferroni-type Bounds            30  (11)
    2.1.1 Linear Combination Bounds                30  (5)
    2.1.2 Non-linear Combination Bounds            35  (6)
  2.2 Univariate Optimality                        41  (18)
  2.3 Multivariate Bounds                          59  (15)
    2.3.1 Complete Bonferroni Summations           59  (2)
    2.3.2 Partial Bonferroni Summations            61  (3)
    2.3.3 Decomposition of Bonferroni Summations   64  (3)
    2.3.4 Classical Bonferroni Bounds in a         67  (7)
    Multivariate Setting
  2.4 Multivariate Optimality                      74  (9)
3 Multivariate Indicator Functions                 83  (28)
  3.1 Method of Indicator Functions                83  (6)
  3.2 Moments of Bivariate Indicator Functions     89  (10)
    3.2.1 Bounds for Joint Probability of          89  (6)
    Exactly r Occurrences
    3.2.2 Bounds for Joint Probability of at       95  (4)
    Least r Occurrences
  3.3 Factorization of Indicator Functions         99  (6)
  3.4 A Paradox on Factorization and Binomial      105 (6)
  Moments
    3.4.1 Upper Bound Inconsistency                105 (5)
    3.4.2 Lower Bound Inconsistency                110 (1)
4 Multivariate Linear Programming Framework        111 (32)
  4.1 Linear Programming Upper Bounds              112 (11)
    4.1.1 Matrix Expression of Upper Frechet       113 (1)
    Optimality
    4.1.2 Target Function of Linear Programming    114 (2)
    4.1.3 Linear Programming Constraints           116 (3)
    4.1.4 Duality Theorem and Existence of         119 (4)
    Optimality
  4.2 Linear Programming Lower Bounds              123 (20)
    4.2.1 Inconsistency of Linear Programming      124 (5)
    Lower Bounds
    4.2.2 Feasible Linear Programming Lower        129 (2)
    Bounds
    4.2.3 A Perturbation Device in Linear          131 (3)
    Programming Optimization
    4.2.4 An Iteration Process in Linear           134 (9)
    Programming Optimization
5 Bivariate Upper Bounds                           143 (24)
  5.1 Bivariate Factorized Upper Bounds            143 (4)
  5.2 Bivariate High-degree Upper Bounds           147 (3)
  5.3 Bivariate Optimal Upper Bounds               150 (10)
    5.3.1 Linear Optimal Upper Bounds              150 (5)
    5.3.2 Bivariate Frechet Optimal Upper Bounds   155 (5)
  5.4 Applications in Multiple Testing             160 (7)
    5.4.1 Bonferroni Procedure                     161 (1)
    5.4.2 Holm Step-down Procedure                 162 (1)
    5.4.3 Improved Holm Procedure                  163 (4)
6 Multivariate and Hybrid Upper Bounds             167 (26)
  6.1 High Dimension Upper Bounds                  167 (10)
  6.2 Hybrid Upper Bounds                          177 (7)
  6.3 Applications in Successive Comparisons       184 (9)
    6.3.1 Equal Variances                          186 (1)
    6.3.2 Unequal Variances, Behrens-Fisher        186 (7)
    Problem
7 Bivariate Lower Bounds                           193 (30)
  7.1 Bivariate Factorized Lower Bounds            193 (10)
  7.2 Bivariate High-degree Lower Bounds           203 (1)
  7.3 Bivariate Optimal Factorized Bounds          204 (4)
  7.4 Bivariate Optimal Algorithm Bounds           208 (13)
  7.5 Applications in Seasonal Trend Analysis      221 (2)
8 Multivariate and Hybrid Lower Bounds             223 (28)
  8.1 High Dimension Lower Bounds                  223 (5)
  8.2 Hybrid Lower Bounds                          228 (21)
    8.2.1 Setting of Hybrid Lower Bounds           229 (5)
    8.2.2 Main Results of Hybrid Lower Bounds      234 (10)
    8.2.3 Examples of Hybrid Lower Bounds          244 (5)
  8.3 Applications in Outlier Detection            249 (2)
9 Case Studies                                     251 (18)
  9.1 Molecular Cancer Therapy                     251 (2)
  9.2 Therapeutic Window                           253 (3)
  9.3 Minimum Effective Dose with                  256 (2)
  Heteroscedasticity
  9.4 Simultaneous Inference with Binary Data      258 (3)
  9.5 Post-thrombotic Syndrome and Rang            261 (3)
  Regression
  9.6 Vascular Risk Assessment                     264 (1)
  9.7 Big-data Analysis                            265 (4)
Bibliography                                       269 (14)
Index                                              283
 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上