新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Elements of Stochastic Modelling
发布日期:2015-12-11  浏览

Elements of Stochastic Modelling

[Book Description]

This is the expanded second edition of a successful textbook that provides a broad introduction to the important area of stochastic modelling. The original text had been developed from lecture notes for a one-semester course on the topic for third-year science and actuarial students at the University of Melbourne. It reviews the basics of probability theory, and then covers the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. The present edition adds new chapters on elements of stochastic calculus and introductory mathematical finance that logically complement the topics chosen for the first edition. This makes the book suitable for a larger variety of university courses presenting the fundamentals of modern stochastic modelling. Rigorous proofs are often replaced with sketches of arguments - with indications as to why a particular result holds, and also how it is connected to other results - and illustrated by well-selected examples.Wherever possible, the book includes references to more specialised texts containing both proofs and more advanced material related to the topics covered.

[Table of Contents]
 
Preface to the First Edition                       vii
Preface to the Second Edition                      xi
1 Introduction                                     1  (8)
2 Basics of Probability Theory                     9  (68)
  2.1 Probability Spaces                           10 (10)
  2.2 Distributions and Integrals                  20 (6)
  2.3 Conditional Probability and Independence     26 (2)
  2.4 Random Variables and Their Distributions     28 (8)
  2.5 Expectations                                 36 (12)
  2.6 Utility Functions                            48 (2)
  2.7 Integral Transforms                          50 (4)
  2.8 Conditional Probabilities and Expectations   54 (3)
  2.9 Limit Theorems                               57 (5)
  2.10 Stochastic Processes                        62 (6)
  2.11 Recommended Literature                      68 (1)
  2.12 Problems                                    69 (8)
3 Markov Chains                                    77 (52)
  3.1 Definitions                                  77 (9)
  3.2 Classification of States                     86 (10)
  3.3 Further Examples                             96 (6)
  3.4 The Limiting Behaviour of Markov Chains      102(14)
  3.5 Random Walks                                 116(6)
  3.6 Recommended Literature                       122(1)
  3.7 Problems                                     123(6)
4 Markov Decision Processes                        129(26)
  4.1 Finite-Stage Models                          130(9)
  4.2 Discounted Dynamic Programming               139(7)
  4.3 Further Examples                             146(4)
  4.4 Recommended Literature                       150(1)
  4.5 Problems                                     151(4)
5 The Exponential Distribution and Poisson         155(16)
Process
  5.1 Properties of the Exponential Distribution   155(4)
  5.2 The Poisson Process                          159(8)
  5.3 Problems                                     167(4)
6 Jump Markov Processes                            171(24)
  6.1 Definitions and Basic Results                171(6)
  6.2 Inhomogeneous Processes                      177(7)
  6.3 Birth-and-Death Processes                    184(5)
  6.4 PASTA                                        189(1)
  6.5 Recommended Literature                       190(1)
  6.6 Problems                                     190(5)
7 Elements of Queueing Theory                      195(32)
  7.1 Definitions and Notation                     195(4)
  7.2 Exponential Queueing Systems                 199(15)
    7.2.1 M/M/1 Systems                            199(8)
    7.2.2 M/M/a Systems                            207(6)
    7.2.3 M/M/a/N Systems                          213(1)
  7.3 The Machine Repair Problem                   214(3)
  7.4 Exponential Queueing Networks                217(5)
  7.5 Recommended Literature                       222(1)
  7.6 Problems                                     223(4)
8 Elements of Renewal Theory                       227(10)
  8.1 Definitions and Notation. Renewal Theorems   227(8)
  8.2 Problems                                     235(2)
9 Elements of Time Series                          237(36)
  9.1 Stationary Sequences                         239(8)
  9.2 Linear Filters and Linear Processes          247(15)
  9.3 A General Approach to Time Series            262(2)
  Modelling
  9.4 Forecasting of Time Series                   264(4)
  9.5 Recommended Literature                       268(1)
  9.6 Problems                                     268(5)
10 Elements of Simulation                          273(30)
  10.1 Basics. Random Number Generators            273(6)
  10.2 The Inverse Function Method                 279(6)
  10.3 The Rejection Method                        285(3)
  10.4 Monte Carlo. Variance Reduction Methods     288(8)
    10.4.1 The Crude Monte Carlo                   289(1)
    10.4.2 The Stratified Sample Method            290(1)
    10.4.3 The Antithetic Variables Method         291(1)
    10.4.4 The Importance Sampling Method          292(4)
  10.5 Markov Chain Monte Carlo                    296(3)
  10.6 Recommended Literature                      299(1)
  10.7 Problems                                    299(4)
11 Martingales and Stochastic Calculus             303(46)
  11.1 Martingales                                 303(13)
  11.2 The Brownian Motion Process                 316(12)
    11.2.1 The Main Properties of the BM Process   316(5)
    11.2.2 The Path Properties                     321(2)
    11.2.3 The Distributions of Some RVs           323(3)
    Related to the BM
    11.2.4 The Three Martingales of the BM         326(2)
    Process
  11.3 Defining the Ito Integral                   328(8)
  11.4 The Ito Formula                             336(4)
  11.5 Stochastic Differential Equations           340(3)
  11.6 Recommended Literature                      343(1)
  11.7 Problems                                    344(5)
12 Diffusion Processes                             349(36)
  12.1 Definitions                                 349(2)
  12.2 Kolmogorov Differential Equations and       351(7)
  Generators
  12.3 Stationary Distributions                    358(4)
  12.4 The Method of Differential Equations        362(5)
  12.5 Some Applications                           367(14)
    12.5.1 Branching Processes                     367(4)
    12.5.2 The Wright-Fisher Model                 371(3)
    12.5.3 The Brownian Bridge Process             374(7)
  12.6 Recommended Literature                      381(1)
  12.7 Problems                                    381(4)
13 Elements of Mathematical Finance                385(48)
  13.1 Introductory Remarks                        385(4)
  13.2 Binomial Markets                            389(4)
  13.3 The Single-Period Binomial Market           393(6)
  13.4 Finite Single-Period Markets                399(7)
  13.5 The Multi-Period Binomial Market            406(7)
  13.6 Martingales and Claim Pricing               413(3)
  13.7 The Black-Scholes Framework                 416(9)
  13.8 Pricing Barrier Options                     425(4)
  13.9 Recommended Literature                      429(1)
  13.10 Problems                                   430(3)
Answers to Problems                                433(38)
Greek Alphabet                                     471(2)
Notations                                          473(2)
Abbreviations                                      475(2)
Index                                              477

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上