The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal. The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments. Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal. 2. Mechanisms of particle adhesion and removal. 3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand particle-particle and particle-substrate interactions. 4. Mechanics of adhesion of micro- and nanoscale particles. 5. Various factors affecting particle adhesion to a variety of substrates. 6. Surface modification techniques to modulate particle adhesion. 7. Various cleaning methods (both wet & dry) for particle removal. 8. Relevance of particle adhesion in a host of technologies ranging from simple to ultra-sophisticated.
Preface xv
Part 1: Particle Adhesion: Fundamentals 1 (200)
1 Fundamental Forces in Particle Adhesion 3 (78)
Stephen Beaudoin
Priyanka Jaiswal
Aaron Harrison
Jennifer Laster
Kathryn Smith
Melissa Sweat
Myles Thomas
1.1 Introduction 3 (1)
1.2 Various Forces in Particle Adhesion 4 (65)
1.2.1 Capillary Forces 4 (23)
1.2.2 van der Waals Forces 27 (22)
1.2.3 Electrostatic Forces 49 (20)
1.3 Summary 69 (1)
References 70 (11)
2 Mechanics of Particle Adhesion and Removal 81 (24)
Goodarz Ahmadi
2.1 Introduction 81 (2)
2.2 Models 83 (13)
2.2.1 Particle Adhesion and Detachment 83 (6)
Models
2.2.2 Rough Particles Adhesion 89 (1)
2.2.3 Charge Distribution 90 (2)
2.2.4 Electrostatic Forces 92 (1)
2.2.5 Capillary Force 93 (1)
2.2.6 Hydrodynamic Forces and Torque 93 (2)
2.2.7 Particle Detachment Models 95 (1)
2.3 Simulations Results 96 (3)
2.4 Summary and Conclusions 99 (1)
Acknowledgements 100(1)
References 100(5)
3 Microscopic Particle Contact Adhesion 105(52)
Models and Macroscopic Behavior of Surface
Modified Particles
Katja Mader-Arndt
Zinaida Kutelova
J?rgen Tomas
3.1 Introduction 105(2)
3.2 Constitutive Contact Models 107(14)
3.2.1 Elastic Contact Deformation 113(2)
3.2.2 Elastic-plastic Contact 115(3)
Deformation
3.2.3 Plastic Contact Deformation 118(1)
3.2.4 Unloading 119(2)
3.3 Macroscopic Powder Behavior - 121(3)
Continuum Mechanics Approach
3.4 Surface Modification to Alter the 124(6)
Adhesion Properties
3.4.1 Surface Free Energy: Dispersion 124(1)
and Polar Components
3.4.2 Glass Surface Cleaning Prior to 125(2)
Silanization
3.4.3 Silanization 127(3)
3.5 Experimental Measurements of the 130(16)
Adhesion Forces
3.5.1 Single Particle Adhesion 130(10)
Measurements
3.5.2 Shear Testing - Macromechanical 140(6)
Approach
3.6 Summary and Conclusions 146(1)
Acknowledgements 147(1)
List of Symbols 147(1)
References 148(9)
4 Characterization of Single Particle 157(44)
Adhesion: A Review of Recent Progress
Armin Saeedi Vandat
Cetin Cetinkaya
4.1 Introduction 157(2)
4.2 Background 159(8)
4.2.1 Adhesion Models 160(1)
4.2.2 Measurement Methods 161(1)
4.2.3 Non-contact Adhesion 161(1)
Characterization of Single Particles
4.2.4 Particle Adhesion to Nano-film 162(2)
Coated Surfaces
4.2.5 Non-contact Particle Manipulation 164(1)
4.2.6 Molecular-scale Characterization 165(2)
Challenges in Biological Adhesion
4.3 Recent Developments 167(26)
4.3.1 Nonlinear Dynamics in Adhesion 167(10)
Characterization of Micro-Particles
4.3.2 Adhesion Characterization of 177(7)
Monolayer Graphene by Vibrational
Spectroscopy
4.3.3 Controllable Rolling Motion of 184(9)
Micro-Spherical Particles in SAW Fields
4.4 Conclusions and Remarks 193(1)
Acknowledgments 194(1)
List of Symbols 194(2)
References 196(5)
Part 2: Particle Removal Techniques 201(342)
5 High Intensity Ultrasonic Cleaning for 203(40)
Particle Removal
Sami B. Awad
Nadia F. Awad
5.1 Introduction 204(1)
5.2 Ultrasound and Ultrasonics 204(3)
5.2.1 Ultrasound Waves 205(1)
5.2.2 Factors Hindering the 206(1)
Transmission of Ultrasound Waves
5.2.3 Principal Mechanism of High Power 206(1)
Ultrasound
5.3 Cavitation Phenomenon 207(4)
5.3.1 Cavitations and Micro-streaming 207(2)
5.3.2 Frequency and Cavitation Abundance 209(1)
5.3.3 Types of Cavitations 210(1)
5.4 Generation of Ultrasound - Transducers 211(6)
5.4.1 Gas-driven Transducers 211(1)
5.4.2 Liquid-driven Transducers 212(1)
5.4.3 Electromechanical Transducers 213(2)
5.4.4 Transducer Assembly 215(1)
5.4.5 Ultrasonic Immersible Transducers 216(1)
5.5 Ultrasonic Generators 217(2)
5.5.1 Power Requirements 217(1)
5.5.2 Multi-Frequency Ultrasonic Systems 217(2)
5.6 Principles of Ultrasonic Cleaning for 219(4)
Particle Removal
5.6.1 Cleaning Process Parameters 221(2)
5.7 Determination of Residual Particles 223(2)
on Surfaces
5.8 Ultrasonic Aqueous Cleaning Equipment 225(3)
and Process
5.9 Precision Cleaning 228(1)
5.10 Contaminants 228(2)
5.11 Ultrasonic Cavitation Forces and 230(2)
Surface Cleaning
5.11.1 Requirements to Produce 231(1)
Cavitations
5.12 Cleaning Chemistry 232(4)
5.12.1 Selection of Ultrasonic Cleaning 234(1)
Chemicals
5.12.2 Maximizing the Overall Cleaning 235(1)
Effect
5.13 Mechanism of Cleaning 236(2)
5.13.1 Particle Removal 236(1)
5.13.2 Particle Removal Mechanism 236(1)
5.13.3 Prevention of Particle 237(1)
Re-deposition
5.13.4 Cleaning Chemistry and Particle 238(1)
Removal
5.14 Cavitation Erosion 238(1)
5.15 Summary 239(1)
References 239(4)
6 Megasonic Cleaning for Particle Removal 243(38)
Manish Keswani
Rajesh Balachandran
Pierre Deymier
6.1 Introduction 243(4)
6.1.1 Wafer Cleaning 244(3)
6.2 Principles of Megasonic Cleaning 247(12)
6.2.1 Acoustic Streaming 248(3)
6.2.2 Acoustic Cavitation 251(8)
6.3 Particle Removal Mechanisms During 259(3)
Megasonic Cleaning
6.4 Types of Megasonic Systems 262(2)
6.5 Particle Removal and Feature Damage 264(10)
in Megasonic Cleaning
6.6 Summary 274(1)
References 274(7)
7 High Speed Air Jet Removal of Particles 281(32)
from Solid Surfaces
Kuniaki Gotoh
7.1 Introduction 281(1)
7.2 Fundamental Characteristics of the 282(4)
Air Jet
7.3 Fundamentals of Air Jet Particle 286(14)
Removal
7.3.1 Definition of Parameters and 286(2)
Removal Efficiency
7.3.2 Effect of Pressure Drop APn and 288(2)
Distance d on Removal Efficiency ri
7.3.3 Effect of Impinging Angle 0 290(4)
7.3.4 Effect of Scan Speed of Air Jet 294(1)
7.3.5 Other Parameters Affecting the 295(5)
Removal Efficiency
7.4 New Methods Using Air Jet 300(7)
7.4.1 Pulsed-jet Method 300(4)
7.4.2 Vibrating Air Jet Method 304(3)
7.5 Summary and Prospect 307(1)
List of Symbols 308(1)
References 309(4)
8 Droplet Spray Technique for Particle Removal 313(24)
James T. Snow
Masanobu Sato
Takayoshi Tanaka
8.1 Introduction 313(1)
8.2 Droplet Impact Phenomena 314(4)
8.2.1 Impact on Solid Surface 315(2)
8.2.2 Crown Formation 317(1)
8.2.3 Impact on Liquid Film 318(1)
8.3 Cleaning Process Window 318(6)
8.3.1 Theoretical Studies 319(1)
8.3.2 Experimental Studies 320(4)
8.4 Droplet Spray Technique for 324(7)
Semiconductor Wafer Cleaning
8.4.1 Initial Studies 324(1)
8.4.2 Droplet Distribution Optimization 325(4)
8.4.3 Advanced Spray 329(2)
8.5 Summary 331(1)
References 331(6)
9 Laser-Induced High-Pressure Micro-Spray 337(28)
Process for Nanoscale Particle Removal
Daehwan Ahn
Changho Seo
Dongsik Kim
9.1 Introduction 337(3)
9.1.1 Nanoscale Contamination Control 337(1)
9.1.2 Review of Physical Cleaning 338(2)
Methods
9.2 Concept of Droplet Opto-Hydrodynamic 340(3)
Cleaning (DOC)
9.3 Micro-Spray Generation by LIB 343(1)
9.4 Mechanisms of Particle Removal by 344(1)
Laser-Induced Spray Jet
9.5 Generation of Micro-Spray Jet 345(7)
9.5.1 Experimental Setup 345(1)
9.5.2 Hydrodynamic Phenomena 346(6)
9.6 Nanoscale Particle Removal 352(8)
9.6.1 Experimental Setup 352(1)
9.6.2 Optimization of Micro-Spray Jet 352(3)
9.6.3 Effect of Process Parameters 355(2)
9.6.4 Sub-100 nm Particle Cleaning 357(3)
9.7 Summary 360(1)
References 360(5)
10 Wiper-Based Cleaning of Particles from 365(46)
Surfaces
Brad Lyon
Jay Postlewaite
10.1 Introduction 366(5)
10.1.1 Why Wipe? 366(1)
10.1.2 Particle Cleanliness 367(4)
10.2 Basic Mechanism of Wiping for 371(8)
Cleaning of Particles and Other
Contaminants
10.2.1 Why Wiping Works 371(2)
10.2.2 Wiping Mechanisms for Particle 373(5)
Removal
10.2.3 Contamination Types 378(1)
10.3 Various Types of Wipers 379(11)
10.3.1 Fabric Construction 381(4)
10.3.2 Edge Type 385(3)
10.3.3 Selecting a Cleanroom Wiper 388(2)
10.4 Proper Ways to Carry Out Wiping or 390(6)
How to Use Wipers Properly
10.4.1 The Purpose of Wiping 390(3)
10.4.2 Wiping Methods 393(2)
10.4.3 Introductory Training Example 395(1)
for Wiper-Based Particle Cleaning
10.5 Characterization of Wipers 396(2)
10.5.1 Methods to Assess Wiper Particle 396(2)
and Fiber Contamination Levels
10.6 Results Obtained Using Wiping 398(7)
10.6.1 Test Method 399(1)
10.6.2 Experimental Setup 400(1)
10.6.3 Data Collection 401(1)
10.6.4 Results 401(4)
10.6.5 Comments 405(1)
10.7 Future Directions 405(1)
10.7.1 Nanotechnology 405(1)
10.7.2 Microfiber Technology 405(1)
10.8 Summary 406(2)
References 408(3)
11 Application of Strippable Coatings for 411(42)
Removal of Particulate Contaminants
Rajiv Kohli
11.1 Introduction 411(1)
11.2 Coating Description 412(1)
11.2.1 Coating Properties 412(1)
11.3 Types of Strippable Coatings 413(13)
11.3.1 Solvent-Based Coatings 413(2)
11.3.2 Water-Based Coatings 415(3)
11.3.3 Coatings for Removal of 418(4)
Radioactive Contamination
11.3.4 Hazardous Materials Cleaning 422(1)
11.3.5 UV Curable Coatings 422(4)
11.4 Issues with Strippable Coatings 426(1)
11.5 Precision Cleaning Applications 427(16)
11.5.1 Optical Surfaces 427(8)
11.5.2 Other Applications 435(1)
11.5.3 Non-Optical Cleaning Applications 436(7)
11.6 Summary 443(1)
Disclaimer 443(1)
References 443(10)
12 Cryoaerosol Cleaning of Particles from 453(24)
Surfaces
Souvik Banerjee
12.1 Introduction 453(2)
12.2 History of Cryoaerosol Cleaning 455(1)
12.3 Thermodynamics of Cryoaerosol 456(5)
Processes
12.3.1 Thermodynamics of CO2 Aerosol 457(3)
Process
12.3.2 Thermodynamics of Ar/N2 460(1)
Cryogenic Aerosol System
12.4 Cleaning Mechanism 461(1)
12.5 Factors Affecting Cleaning 462(7)
Performance
12.5.1 Moisture Control 463(1)
12.5.2 Control of Electrostatic Charging 463(2)
12.5.3 Airflow Management 465(1)
12.5.4 Aerosol Particle Size Control 466(2)
12.5.5 Gas Purity 468(1)
12.6 Results Obtained by Cryoaerosol 469(4)
Cleaning
12.7 Summary and Prospects 473(1)
References 474(3)
13 Supercritical Carbon Dioxide Cleaning: 477(42)
Relevance to Particle Removal
Rajiv Kohli
13.1 Introduction 477(1)
13.2 Surface Cleanliness Levels 478(1)
13.3 Dense Phase Fluids 479(10)
13.3.1 Supercritical Carbon Dioxide 482(7)
13.4 Principles of Supercritical CO2 489(4)
Cleaning
13.4.1 Cleaning Systems 490(1)
13.4.2 Costs 491(2)
13.5 Advantages and Disadvantages of 493(3)
Supercritical CO2 Cleaning
13.5.1 Advantages 493(2)
13.5.2 Disadvantages 495(1)
13.6 Applications 496(6)
13.6.1 Cleaning Spacecraft Components 497(1)
and Planetary Protection
13.6.2 Cleaning of Printing Rollers 498(1)
13.6.3 Carbon Nanotubes 498(1)
13.6.4 Soil Cleaning with Ionic Liquids 499(1)
and SCCO2
13.6.5 Conservation of Historical Art 499(1)
Objects and Structures
13.6.6 Sterilization 500(2)
13.6.7 Monitoring of SCCO2 Precision 502(1)
Cleaning Processes with the Quartz
Crystal Microbalance
13.7 Summary and Conclusions 502(1)
Acknowledgement 503(1)
Disclaimer 503(1)
References 503(16)
14 The Use of Surfactants to Enhance Particle 519(24)
Removal from Surfaces
Brian Grady
14.1 Introduction 519(1)
14.2 Solid-Solid Interactions 520(4)
14.3 Introduction to Surfactants 524(5)
14.4 Surfactant Adsorption at Solid 529(6)
Surfaces
14.5 Surfactants and Particulate Removal 535(4)
14.6 Prospects 539(1)
14.7 Summary 540(1)
Acknowledgements 540(1)
References 540(3)
Index 543