
Capillary Electrophoresis and Microchip Capillary Electrophoresis : Principles, Applications, and Limitations
[BOOK DESCRIPTION]
Providing the most current information related to separations by capillary electrophoresis and microchip capillary electrophoresis, this innovative text provides a fundamental understanding of the CE and microchip-CE and their applications, along with troubleshooting hints. Emphasizing applications, such as protein characterization, Capillary Electrophoresis and Microchip Capillary Electrophoresis covers the most fundamental aspects of electrophoretically driven separations, specific problems linked to capillary electrophoresis at the microchip scale, including microfabrication techniques, separation modes, and detection systems, and concludes with a critical discussion related to applications of the technique.
[TABLE OF CONTENTS]
Preface xvii
Acknowledgments xix
Contributors xxi
1 Critical Evaluation of the Use of 1 (22)
Surfactants in Capillary Electrophoresis
Jessica L. Felhofer
Karin Y. Chumbimuni-Torres
Maria F. Mora
Gabrielle G. Haby
Carlos D. Garcia
1.1 Introduction 1 (3)
1.2 Surfactants for Wall Coatings 4 (2)
1.2.1 Controlling the Electroosmotic 4 (1)
Flow
1.2.2 Preventing Adsorption to the 5 (1)
Capillary
1.3 Surfactants as Buffer Additives 6 (3)
1.3.1 Micellar Electrokinetic 6 (2)
Chromatography
1.3.2 Microemulsion Electrokinetic 8 (1)
Chromatography
1.3.3 Nonaqueous Capillary 9 (1)
Electrophoresis with Added Surfactants
1.4 Surfactants for Analyte 9 (5)
Preconcentration
1.4.1 Sweeping 10 (1)
1.4.2 Transient Trapping 11 (1)
1.4.3 Analyte Focusing by Micelle 12 (1)
Collapse
1.4.4 Micelle to Solvent Stacking 12 (1)
1.4.5 Combinations of Preconcentration 12 (1)
Methods
1.4.6 Cloud Point Extraction 12 (2)
1.5 Surfactants and Detection in CE 14 (2)
1.5.1 Mass Spectrometry 14 (1)
1.5.2 Electrochemical Detection 15 (1)
1.6 Conclusions 16 (7)
References 17 (6)
2 Sample Stacking: A Versatile Approach for 23 (18)
Analyte Enrichment in CE and Microchip-CE
Bruno Perlatti
Emanuel Carrilho
Fernando Armani Aguiar
2.1 Introduction 23 (1)
2.2 Isotachophoresis 24 (1)
2.3 Chromatography-Based Sample Stacking 25 (1)
2.4 Methods Based on Electrophoretic 26 (3)
Mobility and Velocity Manipulation
(Electrophoretic Methods)
2.4.1 Field-Enhanced Sample Stacking 27 (1)
(FESS)
2.4.2 Field-Enhanced Sample Injection 27 (1)
(FESI)
2.4.3 Large-Volume Sample Stacking 28 (1)
(LVSS)
2.4.4 Dynamic pH Junction 28 (1)
2.5 Sample Stacking in Pseudo-Stationary 29 (4)
Phases
2.5.1 Field-Enhanced Sample Stacking 29 (1)
2.5.2 Hydrodynamic Injection Techniques 30 (1)
2.5.2.1 Normal Stacking Mode (NSM) 30 (1)
2.5.2.2 Reverse Electrode Polarity 30 (1)
Stacking Mode (REPSM)
2.5.2.3 Stacking with Reverse Migrating 30 (1)
Micelles (SRMM)
2.5.2.4 Stacking Using Reverse 31 (1)
Migrating Micelles and a Water Plug
(SRW)
2.5.2.5 High-Conductivity Sample 31 (1)
Stacking (HCSS)
2.5.3 Electrokinetic Injection 32 (1)
Techniques
2.5.3.1 Field-Enhanced Sample Injection 32 (1)
(FESI-MEKC)
2.5.3.2 Field-Enhanced Sample Injection 32 (1)
with Reverse Migrating Micelles
(FESI-RMM)
2.5.4 Sweeping 32 (1)
2.5.5 Combined Techniques 33 (1)
2.5.5.1 Dynamic pH Junction: Sweeping 33 (1)
2.5.5.2 Selective Exhaustive Injection 33 (1)
(SEI)
2.5.6 New Techniques 33 (1)
2.6 Stacking Techniques in Microchips 33 (3)
2.7 Concluding Remarks 36 (5)
References 37 (4)
3 Sampling and Quantitative Analysis in 41 (26)
Capillary Electrophoresis
Petr Kuban
Andrus Seiman
Mihkel Kaljurand
3.1 Introduction 41 (1)
3.2 Injection Techniques in CE 42 (11)
3.2.1 Hydrodynamic Sample Injection 43 (1)
3.2.1.1 Principle 43 (1)
3.2.1.2 Advantages and Performance 44 (1)
3.2.1.3 Disadvantages 44 (1)
3.2.2 Electrokinetic Sample Injection 44 (1)
3.2.2.1 Principle 44 (1)
3.2.2.2 Advantages and Performance 45 (1)
3.2.2.3 Disadvantages 45 (1)
3.2.3 Bias-Free Electrokinetic Injection 45 (1)
3.2.4 Extraneous Sample Introduction 46 (2)
Accompanying Injections in CE
3.2.5 Sample Stacking 48 (1)
3.2.5.1 Principle 48 (1)
3.2.5.2 Advantages and Performance 49 (1)
3.2.5.3 Disadvantages 50 (1)
3.2.6 Alternative Batch Sample 50 (1)
Injection Techniques
3.2.6.1 Rotary-Type Injectors for CE 50 (1)
3.2.6.2 Hydrodynamic Sample Splitting 51 (1)
as Injection Method for CE
3.2.6.3 Electrokinetic Sample Splitting 52 (1)
as Injection Method for CE
3.2.6.4 Dual-Opposite End Injection in 52 (1)
CE
3.3 Micromachined/Microchip Injection 53 (2)
Devices
3.3.1 Droplet Sampler Based on Digital 53 (1)
Microfluidics
3.3.2 Wire Loop Injection 54 (1)
3.4 Automated Flow Sample Injection and 55 (2)
Hyphenated Systems
3.4.1 Introduction 55 (1)
3.4.2 Advantages and Performance 56 (1)
3.4.3 Disadvantages 57 (1)
3.5 Computerized Sampling and Data 57 (1)
Analysis
3.6 Sampling in Portable CE 58 (1)
Instrumentation
3.7 Quantitative Analysis in CE 59 (3)
3.7.1 Introduction 59 (1)
3.7.2 Quantitative Analysis with HD 59 (1)
Injection
3.7.3 Quantitative Analysis with EK 60 (1)
Injection
3.7.4 Validation of the Developed CE 61 (1)
Methods
3.7.5 Computer Data Treatment in 61 (1)
Quantitative Analysis
3.8 Conclusions 62 (5)
References 62 (5)
4 Practical Considerations for the Design 67 (10)
and Implementation of High-Voltage Power
Supplies for Capillary and Microchip
Capillary Electrophoresis
Lucas Blanes
Wendell Karlos
Tomazelli Coltro
Renata Mayumi Saito
Claudimir Lucio do Lago
Claude Roux
Philip Doble
4.1 Introduction 67 (6)
4.1.1 High-Voltage Fundamentals 67 (1)
4.1.2 Electroosmotic Flow Control 68 (2)
4.1.3 Technical Aspects 70 (1)
4.1.4 Construction of Bipolar HVPS from 70 (1)
Unipolar HVPS
4.1.5 Safety Considerations 71 (1)
4.1.6 HVPS Commercially Available 71 (1)
4.1.7 Practical Considerations 72 (1)
4.1.8 Alternative Sources of HV 72 (1)
4.1.9 HVPS Controllers for MCE 72 (1)
4.2 High-Voltage Measurement 73 (1)
4.3 Concluding Remarks 74 (3)
References 74 (3)
5 Artificial Neural Networks in Capillary 77 (18)
Electrophoresis
Josef Havel
Eladia Maria Pena-Mendez
Alberto Rojas-Hernandez
5.1 Introduction 77 (1)
5.2 Optimization in CE: From Single 77 (4)
Variable Approach Toward Artificial
Neural Networks
5.2.1 Limitations of "Traditional" 79 (1)
Single Variable Approach
5.2.2 Multivariate Approach with 79 (1)
Experimental Design and Response
Surface Modeling
5.2.2.1 Experimental Design 79 (1)
5.2.2.2 Response Surface Modeling 80 (1)
5.3 Artificial Neural Networks in 81 (9)
Electromigration Methods
5.3.1 Introduction---Basic Principles 81 (1)
of ANN
5.3.2 Optimization Using a Combination 82 (1)
of ED and ANN
5.3.2.1 Testing of ED-ANN Algorithm 83 (1)
5.3.2.2 Practical Applications of ED-ANN 83 (1)
5.3.3 Quantitative CE Analysis and 84 (1)
Determination from Overlapped Peaks
5.3.3.1 Evaluation of Calibration Plots 84 (2)
in CE Using ANN to Increase Precision
of Analysis
5.3.3.2 ANN in Quantitative CE Analysis 86 (1)
from Overlapped Peaks
5.3.4 ANN in CEC and MEKC 86 (2)
5.3.5 ANN for Peptides Modeling 88 (1)
5.3.6 Classification and Fingerprinting 88 (2)
5.3.7 Other Applications 90 (1)
5.4 Conclusions 90 (5)
Acknowledgments 91 (1)
References 91 (4)
6 Improving the Separation in Microchip 95 (32)
Electrophoresis by Surface Modification
M. Teresa Fernandez-Abedul
Isabel Alvarez-Martos
Francisco Javier
Garcia Alonso
Agustin Costa-Garcia
6.1 Introduction 95 (1)
6.2 Strategies for Improving Separation 96 (6)
6.2.1 Selection of an Adequate 96 (1)
Technique: ME
6.2.2 Microchannel Design 96 (1)
6.2.3 Selection of an Appropriate ME 96 (1)
Material
6.2.4 Optimization of the Working 97 (1)
Conditions
6.2.5 Surface Modification 97 (1)
6.2.5.1 Surface Micro-and 98 (1)
Nanostructuring
6.2.5.2 Employment of Energy Sources 99 (1)
6.2.5.3 Chemical Surface Modification 99 (3)
6.3 Chemical Modifiers 102 (17)
6.3.1 Surfactants 104 (1)
6.3.2 Ionic Liquids 105 (3)
6.3.3 Nanoparticles 108 (2)
6.3.4 Polymers 110 (9)
6.4 Conclusions 119 (8)
Acknowledgments 120 (1)
References 120 (7)
7 Capillary Electrophoretic Reactor and 127 (18)
Microchip Capillary Electrophoretic
Reactor: Dissociation Kinetic Analysis
Method for "Complexes" Using Capillary
Electrophoretic Separation Process
Toru Takahashi
Nobuhiko Iki
7.1 Introduction 127 (1)
7.2 Basic Concept of CER 128 (1)
7.3 Dissociation Kinetic Analysis of 129 (4)
Metal Complexes Using a CER
7.3.1 Determination of the Rate 130 (3)
Constants of Dissociation of 1:2
Complexes of Al3+ and Ga3+ with an Azo
Dye Ligand
2,2'-Dihydroxyazobenzene-5,5'-Disulfonat
e in a CER
7.4 Expanding the Scope of the CER to 133 (2)
Measurements of Fast Dissociation
Kinetics with a Half-Life from Seconds to
Dozens of Seconds: Dissociation Kinetic
Analysis of Metal Complexes Using a
Microchip Capillary Electrophoretic
Reactor (μCER)
7.5 Expanding the Scope of the CER to the 135 (4)
Measurement of Slow Dissociation Kinetics
with a Half-Life of Hours
7.5.1 Principle of LS-CER 135 (1)
7.5.2 Application of LS-CER to the 136 (2)
Ti(IV)-Catechin Complex
7.5.3 Application of LS-CER to the 138 (1)
Ti(IV)-Tiron Complex
7.6 Expanding the Scope of CER to
Measurement of the
Dissociation Kinetics of Biomolecular 139 (1)
Complexes
7.6.1 Dissociation Kinetic Analysis of 139 (3)
[SSB-ssDNA] Using CER
7.7 Conclusions 142 (3)
References 142 (3)
8 Capacitively Coupled Contactless 145 (16)
Conductivity Detection (C4D) Applied to
Capillary Electrophoresis (CE) and
Microchip Electrophoresis (MCE)
Jose Alberto
Fracassi da Silva
Claudimir Lucio do Lago
Dosil Pereira de Jesus
Wendell Karlos
Tomazelli Coltro
1 Introduction 145 (1)
2 Theory of C4D 145 (1)
8.2.1 Basic Principles of C4D 145 (1)
8.2.2 Simulation 146 (1)
8.2.3 Basic Equation for Sensitivity 147 (1)
8.2.4 Equivalent Circuit of a CE-C4D 147 (1)
System
8.2.5 Practical Guidelines 148 (1)
8.3 C4D Applied to Capillary 148 (3)
Electrophoresis
8.3.1 Instrumental Aspects in CE 149 (1)
8.3.2 Coupling C4D with UV-Vis 149 (1)
Photometric Detectors in CE
8.3.3 Fundamental Studies in Capillary 149 (1)
Electrophoresis Using C4D
8.3.4 Fundamental Studies on C4D 149 (1)
8.3.5 Applications 150 (1)
8.4 C4D Applied to Microchip Capillary 151 (10)
Electrophoresis
8.4.1 Geometry of the Detection 151 (1)
Electrodes
8.4.1.1 Embedded Electrodes 151 (2)
8.4.1.2 Attached Electrodes 153 (1)
8.4.1.3 External Electrodes 153 (1)
8.4.2 Applications 154 (1)
8.4.2.1 Bioanalytical Applications 154 (1)
8.4.2.2 On-Chip Enzymatic Reactions 155 (1)
8.4.2.3 Food Analysis 155 (1)
8.4.2.4 Explosives and Chemical Warfare 155 (1)
Agents
8.4.2.5 Other Applications 156 (1)
5 Concluding Remarks 156 (1)
Acknowledgments 157 (1)
References 157 (4)
9 Capillary Electrophoresis with 161 (16)
Electrochemical Detection
Blanaid White
9.1 Principles of Electrochemical 161 (2)
Detection
9.1.1 Amperometric Detection 161 (1)
9.1.2 Potentiometric Detection 162 (1)
9.1.3 Conductivity Detection 162 (1)
9.2 Interfacing Amperometric Detection to 163 (5)
Capillary Electrophoresis
9.2.1 Off-Column Detection 163 (1)
9.2.2 End-Column Detection 164 (1)
9.2.3 Use of Multiple Detection 165 (1)
Electrodes
9.2.4 Pulsed Amperometric Detection 166 (1)
9.2.5 Nonaqueous EC Detection 166 (1)
9.2.6 Electrode Material 166 (1)
9.2.7 Dual Conductivity and 167 (1)
Amperometric Detection
9.3 Interfacing Electrochemical Detection 168 (9)
to Microfluidic Capillary Electrophoresis
9.3.1 End-Column Detection 168 (1)
9.3.2 Pulsed Amperometric Detection 169 (1)
9.3.3 Off-Channel Detection 169 (1)
9.3.4 Electrode Material 170 (1)
9.3.5 Portable CE and MCE Systems 170 (1)
9.3.6 Applications of CE-MCE with AD 171 (2)
9.3.7 Future Directions for CE-MCE with 173 (1)
EC Detection
References 173 (4)
10 Overcoming Challenges in Using Microchip 177 (24)
Electrophoresis for Extended Monitoring
Applications
Scott D. Noblitt
Charles S. Henry
10.1 Introduction 177 (2)
10.2 Background Electrolyte (BGE) 179 (7)
Longevity
10.3 Achieving Rapid Sequential Injections 186 (6)
10.4 Robust Quantitation 192 (5)
10.5 Conclusions 197 (4)
References 198 (3)
11 Distinction of Coexisting Protein 201 (28)
Conformations by Capillary Electrophoresis
Hanno Stutz
11.1 Introduction 201 (2)
11.1.1 Theoretical Aspects of in vivo 202 (1)
Protein Folding
11.2 Protein Misfolding and Induction of 203 (1)
Unfolding
11.3 Conformational Pathologies 204 (1)
11.4 Distinction Between Conformations 205 (1)
11.5 Relevance of Conformations for 206 (1)
Biotechnological Products
11.6 Conformational Elucidation---An 206 (1)
Overview of Alternative Methods to CE
11.7 HPLC in Conformational Distinction 207 (2)
11.7.1 Intact Proteins 207 (1)
11.7.1.1 Reversed-Phase (RP)-HPLC 207 (1)
11.7.1.2 Size Exclusion (SEC)-HPLC 208 (1)
11.7.1.3 Ion-Exchange-HPLC 208 (1)
11.7.2 HPLC with Detectors Sensitive 208 (1)
for Conformations and Aggregates
11.7.3 Peptides as Model Compounds for 208 (1)
Hydrophobic Stationary Phases in HPLC
11.8 Capillary Electrophoresis (CE) in 209 (14)
Conformational Separations
11.8.1 Fundamental Aspects and Survey 209 (1)
of Pitfalls
11.8.2 Electrophoretic Mobility of 210 (1)
Proteins
11.8.3 Peak Profiles and Derivable 211 (2)
Thermodynamic Aspects of Protein
Re-/Unfolding
11.8.4 Dipeptides as a Case Study for 213 (1)
Isomerization
11.8.5 Denaturation Factors and 214 (1)
Strategies Applied in CE
11.8.5.1 Separation Electrolyte, 215 (1)
Injection Solution, and Sample Storage
11.8.5.2 Denaturation by Urea, 215 (1)
Dithiothreitol, and GdmCl
11.8.5.3 Effects of pH and Organic 216 (1)
Solvents
11.8.5.4 Temperature 216 (2)
11.8.5.5 Electrical Field 218 (1)
11.8.5.6 Detergents 218 (3)
11.8.5.7 Ligands and Ions---Case 221 (1)
Studies on Potential Amyloidogenic
β2m
11.8.6 β-Amyloid Peptides 222 (1)
11.8.6.1 Prions 223 (1)
11.9 Comparison Between CE and HPLC 223 (1)
11.10 Conclusive Discussion and Method 223 (6)
Evaluation
11.10.1 General Aspects 223 (1)
11.10.2 HPLC 224 (1)
11.10.3 CE 224 (1)
References 225 (4)
12 Capillary Electromigration Techniques 229 (18)
for the Analysis of Drugs and Metabolites
in Biological Matrices: A Critical Appraisal
Cristiane Masetto de Gaitani
Anderson Rodrigo
Moraes de Oliveira
Pierina Sueli Bonato
12.1 Introduction 229 (1)
12.2 Strategies to Obtain Reliable 230 (8)
Capillary Electromigration Methods for
the Bioanalysis of Drugs and Metabolites
12.2.1 Selectivity and Detectability 230 (2)
12.2.1.1 Efficiency 232 (1)
12.2.1.2 Sample Preparation 233 (2)
12.2.1.3 Detectors 235 (1)
12.2.2 Repeatability 236 (2)
12.3 Selected Applications of Capillary 238 (5)
Electromigration Techniques in Bioanalysis
12.3.1 Pharmacokinetics and Metabolism 238 (2)
Studies
12.3.2 Enantioselective Analysis of 240 (1)
Drugs and Metabolites
12.3.3 Biopharmaceuticals or 240 (1)
Biotechnology-Derived Pharmaceuticals
12.3.4 Therapeutic Drug Monitoring 241 (1)
12.3.5 Clinical and Forensic Toxicology 242 (1)
12.4 Concluding Remarks 243 (4)
References 243 (4)
13 Capillary Electrophoresis and Multicolor 247 (20)
Fluorescent DNA Analysis in an Optofluidic
Chip
Chaitanya Dongre
Hugo J.W.M. Hoekstra
Markus Pollnau
13.1 Introduction 247 (1)
13.2 Optofluidic Integration in an 248 (1)
Electrophoretic Microchip
13.2.1 Sample Fabrication 248
13.2.2 Optofluidic Characterization 218 (31)
13.3 Fluorescence Monitoring of On-Chip 249 (4)
DNA Separation
13.3.1 Experimental Materials and 249 (1)
Methods
13.3.2 Experimental Results and Analysis 250 (3)
13.4 Toward Ultrasensitive Fluorescence 253 (2)
Detection
13.4.1 Optimization of the Experimental 253 (1)
Setup
13.4.2 All-Numerical Postprocessed 253 (2)
Noise Filtering
13.5 Multicolor Fluorescent DNA Analysis 255 (8)
13.5.1 Dual-Point, Dual-Wavelength 256 (3)
Fluorescence Monitoring
13.5.2 Modulation-Frequency Encoded 259 (1)
Multiwavelength Fluorescence Sensing
13.5.3 Application to Multiplex 260 (3)
Ligation-Dependent Probe Amplification
13.6 Conclusions and Outlook 263 (4)
Acknowledgments 264 (1)
References 264 (3)
14 Capillary Electrophoresis of Intact 267 (10)
Unfractionated Heparin and Related
Impurities
Robert Weinberger
14.1 Introduction 267 (2)
14.2 Capillary Electrophoresis and Heparin 269 (1)
14.3 Method Development in Capillary 269 (3)
Electrophoresis
14.4 Common Impurities Found in Heparin 272 (1)
14.5 The United States Pharmacoepia and 273 (1)
CE of Heparin
14.6 Interlaboratory Collaborative Study 274 (1)
14.7 Conclusions 275 (2)
References 275 (2)
15 Microchip Capillary Electrophoresis for 277 (16)
In Situ Planetary Exploration
Peter A. Willis
Amanda M. Stockton
15.1 Introduction 277 (2)
15.2 Instrument Design 279 (1)
15.3 Instrumentation External to the 280 (2)
Microdevice
15.4 Microdevice Basics 282 (3)
15.4.1 All-Glass Devices for Microchip 282 (2)
Capillary Electrophoresis
15.4.2 Three-Layer Hybrid Substrate 284 (1)
Glass-PDMS Devices for Fluidic
Manipulation
15.4.3 Integrating Fluidic Manipulation 285 (1)
with Electrophoresis
15.5 Microdevices and their Applications 285 (4)
15.5.1 Microdevices with Bus-Valve 285 (3)
Control of Microfluidic Manipulation
15.5.2 Automaton Devices for 288 (1)
Programmable Microfluidic Manipulation
15.6 Conclusions 289 (4)
Acknowledgments 290 (1)
References 290 (3)
16 Rapid Analysis of Charge Heterogeneity 293 (16)
of Monoclonal Antibodies by Capillary Zone
Electrophoresis and Imaged Capillary
Isoelectric Focusing
Yan He
Jim Mo
Xiaoping He
Margaret Ruesch
16.1 Introduction 293 (2)
16.2 Capillary Zone Electrophoresis 295 (4)
16.2.1 Separation and Detection Strategy 295 (1)
16.2.1.1 Capillary Construction 295 (1)
16.2.1.2 Buffer Composition 295 (2)
16.2.1.3 Separation Voltage and Field 297 (1)
Strength
16.2.1.4 Detection 297 (1)
16.2.2 Applications 297 (2)
16.3 Imaged Capillary Isoelectric Focusing 299 (7)
16.3.1 Method Development and 299 (1)
Optimization
16.3.1.1 Carrier Ampholyte 300 (1)
16.3.1.2 Additives 300 (1)
16.3.1.3 Focusing Time and Voltage 300 (3)
16.3.1.4 Salt Concentration 303 (1)
16.3.1.5 Protein Concentration 303 (1)
16.3.2 iCE Method Validation 303 (1)
16.3.3 Applications 304 (1)
16.3.3.1 Cell Line Development Support 304 (1)
16.3.3.2 Formulation Screening 304 (1)
16.3.3.3 Characterization of Acidic 305 (1)
Species
16.4 Summary 306 (3)
References 307 (2)
17 Application of Capillary Electrophoresis 309 (10)
for High-Throughput Screening of Drug
Metabolism
Roman Reminek
Jochen Pauwels
Xu Wang
Jos Hoogmartens
Zdenek Glatz
Ann Van Schepdael
17.1 Introduction 309 (1)
17.2 Sample Deproteinization 310 (1)
17.3 On-line Preconcentration 311 (1)
17.4 Method Development 312 (2)
17.4.1 Dynamic Coating of Inner 312 (1)
Capillary Wall
17.4.2 Short-End Injection 313 (1)
17.4.3 Strong Rinsing Procedure 313 (1)
17.4.4 Optimized Method 313 (1)
17.5 Method Validation 314 (1)
17.6 Method Applications 315 (1)
17.6.1 Drug Stability Screening 315 (1)
17.6.2 Kinetic Study 316 (1)
17.7 Conclusions 316 (3)
Acknowledgments 317 (1)
References 317 (2)
18 Electrokinetic Transport of 319 (8)
Microparticles in the Microfluidic
Enclosure Domain
Qian Liang
Chun Yang
Jianmin Miao
18.1 Introduction 319 (1)
18.2 Numerical Model 320 (2)
18.2.1 Problem Description 320 (1)
18.2.2 Mathematical Model 320 (2)
18.3 Numerical Simulation 322 (1)
18.4 Results and Discussion 322 (3)
18.4.1 Particle Transport in the Bulk 322 (1)
Flow
18.4.1.1 The Particle Velocity in the 322 (1)
Confined Domain
18.4.1.2 The Trajectory of Particle 323 (1)
Transport within the Confined Domain
18.4.1.3 The Effect of Sidewall Zeta 324 (1)
Potential on the Particle Motion
18.4.2 Particle Transport Near the 325 (1)
Bottom Surface
18.4.2.1 The Effect of the EDL 325 (1)
Thickness on the Near Wall Motion of
the Particle
18.4.2.2 The Effect of Surface Charge 325 (1)
on the Near Wall Transport of the
Particle
18.5 Model Application 325 (1)
18.6 Conclusions 326 (1)
References 326 (1)
19 Integration of Nanomaterials in 327 (32)
Capillary and Microchip Electrophoresis as
a Flexible Tool
German A. Messina
Roberto A. Olsina
Patricia W. Stege
19.1 Introduction 327 (5)
19.1.1 Historical Overview of 327 (2)
Nanotechnology
19.1.2 Nanomaterials 329 (1)
19.1.2.1 Carbon-Based Nanomaterials 329 (1)
19.1.2.2 Metal-Based Nanomaterials 329 (2)
19.1.2.3 Dendrimers 331 (1)
19.1.2.4 Composites 331 (1)
19.2 Nanomaterials in Analytical Chemistry 332 (1)
19.3 Nanoparticles in Capillary 333 (19)
Electrophoresis
19.3.1 Nanoparticles in Capillary 334 (1)
Electrochromatography
19.3.1.1 Organic Nanoparticles 334 (4)
19.3.1.2 Inorganic Particles 338 (4)
19.3.2 Nanoparticles in Electrokinetic 342 (1)
Chromatography
19.3.2.1 Organic Nanoparticles 343 (4)
19.3.2.2 Inorganic Particles 347 (2)
19.3.3 Nanoparticles in Microchip 349 (3)
Electrochromatography
19.4 Conclusions 352 (7)
References 353 (6)
20 Microchip Capillary Electrophoresis to 359 (8)
Study the Binding of Ligands to Teicoplanin
Derivatized on Magnetic Beads
Toni Ann Riveros
Roger Lo
Xiaojun Liu
Marisol Salgado
Hector Carmona
Frank A. Gomez
20.1 Introduction 359 (1)
20.2 Experimental Section 359 (2)
20.2.1 Materials and Methods 359 (1)
20.2.1.1 Equipment and Fabrication of 360 (1)
the Microchips
20.2.1.2 Surface Coating 360 (1)
20.2.1.3 Teic Immobilization on 360 (1)
Magnetic Microbeads
20.2.2 Procedures 360 (1)
20.2.2.1 FAMCE Studies 360 (1)
20.2.2.2 MFAC Studies 361 (1)
20.3 Results and Discussion 361 (3)
20.3.1 FAMCE Studies 361 (1)
20.3.1.1 Nonspecific Adsorption 361 (1)
Resistance
20.3.1.2 The Binding of DA3 to 362 (1)
Teic-Beads
20.3.2 MFAC Studies 363 (1)
20.4 Conclusions 364 (3)
Acknowledgments 365 (1)
References 365 (2)
21 Glycomic Profiling Through Capillary 367 (18)
Electrophoresis and Microchip Capillary
Electrophoresis
Yehia Mechref
21.1 Introduction 367 (2)
21.1.1 Release of N-Glycans from 368 (1)
Glycoproteins
21.1.1.1 Chemical Release 368 (1)
21.1.1.2 Enzymatic Release 368 (1)
21.1.2 Release of O-Glycans from 368 (1)
Glycoproteins
21.1.2.1 Chemical Release 368 (1)
21.1.2.2 Enzymatic Release 369 (1)
21.2 General Considerations of Capillary 369 (8)
Electrophoresis and Microchip Capillary
Electrophoresis of Glycans
21.2.1 Capillary 369 (3)
Electrophoresis-Laser-Induced
Fluorescence (CE-LIF) Analysis of
Glycans
21.2.2 Interfacing Capillary 372 (1)
Electrophoresis and Capillary
Electrochromatography to Mass
Spectrometry
21.2.2.1 ESI Interfaces for Capillary 372 (1)
Electrophoresis
21.2.2.2 Sheathless-Flow Interface 372 (1)
21.2.2.3 Sheath-Flow Interface 373 (1)
21.2.2.4 Liquid Junction Interface 373 (1)
21.2.2.5 MALDI Interfaces for Capillary 373 (1)
Electrophoresis
21.2.2.6 CE-MS Analysis of Glycans 374 (2)
21.2.2.7 Glycomic Analysis by CEC-MS 376 (1)
21.3 Microchip Capillary Electrophoresis 377 (3)
21.4 Conclusions 380 (5)
References 381 (4)
Index 385