
Supramolecular Materials for Opto-Electronics
[BOOK DESCRIPTION]
For years, concepts and models relevant to the fields of molecular electronics and organic electronics have been invented in parallel, slowing down progress in the field. This book illustrates how synthetic chemists, materials scientists, physicists, and device engineers can work together to reach their desired, shared goals, and provides the knowledge and intellectual basis for this venture. Supramolecular Materials for Opto-Electronics covers the basic principles of building supramolecular organic systems that fulfil the requirements of the targeted opto-electronic function; specific material properties based on the fundamental synthesis and assembly processes; and provides an overview of the current uses of supramolecular materials in opto-electronic devices. To conclude, a "what's next" section provides an outlook on the future of the field, outlining the ways overarching work between research disciplines can be utilised. Postgraduate researchers and academics will appreciate the fundamental insight into concepts and practices of supramolecular systems for opto-electronic device integration.
[TABLE OF CONTENTS]
Chapter 1 Self-assembled Supramolecular 1 (52)
Materials in Organic Electronics
Emilie Moulin
Eric Busseron
Nicolas Giuseppone
1.1 Introduction 1 (1)
1.2 Conducting Supramolecular Materials 2 (16)
1.2.1 Thiophene Derivatives 2 (4)
1.2.2 Tetrathiafulvalene Derivatives 6 (1)
1.2.3 Porphyrins and Pyrroles Derivatives 7 (3)
1.2.4 Polyaromatic Derivatives 10 (1)
1.2.5 Perylene Derivatives 11 (3)
1.2.6 Triarylamine Derivatives 14 (1)
1.2.7 Other Aromatic Molecules 15 (3)
1.3 Organic Field Effect Transistors 18 (8)
1.3.1 Thiophene Derivatives 19 (1)
1.3.2 Tetrathiafulvalene Derivatives 20 (1)
1.3.3 Phthalocyanine Derivatives 21 (1)
1.3.4 Perylene Derivatives 21 (3)
1.3.5 Other Aromatic Molecules 24 (2)
1.4 Organic Light-Emitting Devices 26 (6)
1.4.1 Oligo(phenylenevinylene) Derivatives 26 (1)
1.4.2 Fluorene Derivatives 27 (1)
1.4.3 Polyaromatic Molecules 27 (2)
1.4.4 Metallic and Inclusion Complexes 29 (1)
1.4.5 H-bond and Metallo-supramolecular 30 (2)
Polymers
1.5 Organic Photovoltaic Devices 32 (9)
1.5.1 Thiophene Derivatives 32 (4)
1.5.2 Porphyrin and Phthalocyanine 36 (1)
Derivatives
1.5.3 Diketopyrrolopyrrole Derivatives 37 (1)
1.5.4 Hexabenzocoronene Derivatives 38 (1)
1.5.5 Rylene Derivatives 39 (1)
1.5.6 Triarylamines Molecules 40 (1)
1.5.7 Other Aromatic Molecules 40 (1)
1.6 Conclusion 41 (1)
Acknowledgements 42 (1)
References 42 (11)
Chapter 2 Multicomponent Assembly Strategies 53 (45)
for Supramolecular Systems
Dimas G. de Oteyza
2.1 Introduction 53 (2)
2.2 Taming the Driving Forces behind 55 (25)
Multicomponent Self-Assembly
2.2.1 Molecule-Substrate Interactions 57 (6)
2.2.2 Intermolecular Interactions 63 (17)
2.3 Electronic Considerations in 80 (8)
Multicomponent Molecular Assemblies
2.3.1 Standard Interfacial Models 80 (4)
2.3.2 Supramolecular 84 (4)
Environment-Dependent Electronic
Properties
2.4 Concluding Remarks 88 (1)
References 89 (9)
Chapter 3 Low-Dimensional Supramolecular 98 (21)
Assemblies on Surfaces
Tianchao Niu
Jia Lin Zhang
Wei Chen
3.1 Introduction 98 (1)
3.2 1D Molecular Chains 99 (7)
3.2.1 Substrate Template Directed 100(1)
Self-Assembly of 1D Molecular Chains
3.2.2 1D Molecular Chains Assembled 101(2)
through Hydrogen Bonding
3.2.3 Metal-Organic Coordination Bonds 103(1)
Assisted Assembly of 1D Molecular Chains
3.2.4 On-Surface Synthesis towards 104(2)
Covalently Bonded 1D Molecular Chains
3.3 2D Molecular Networks 106(9)
3.3.1 Single-Component Supramolecular 107(2)
Structures on Surfaces
3.3.2 Binary Molecular Networks 109(3)
3.3.3 On-Surface Covalent-Bonded 112(3)
Molecular Networks
3.4 Conclusion 115(1)
Acknowledgement 116(1)
References 116(3)
Chapter 4 Self-Assembled Mono- and Multilayers 119(54)
for Functional Opto-Electronic Devices
Antonio Facchetti
Rocio Ponce Ortiz
Tobin J. Marks
4.1 Introduction 119(1)
4.2 Concepts of Molecular Self-Assembly for 120(5)
Mono- and Multilayer Fabrication and
Function
4.3 Applications of SAM and SAMT to Organic 125(34)
Opto-Electronic Devices
4.3.1 Organic Field-Effect Transistors 128(16)
4.3.2 Bulk-Heterojunction Solar Cells 144(8)
4.3.3 Organic Light-Emitting Diodes 152(2)
4.3.4 Electro-Optic Devices 154(5)
4.4 Conclusions 158 Acknowledgments 159(1)
References 159(14)
Chapter 5 Amphiphilic Design for Supramolecular 173(30)
Materials with Opto-Electronic Functions
Subi J. George
Ankit Jain
K. Venkata Rao
5.1 Introduction 173(3)
5.2 Electronic Functionality 176(15)
5.2.1 p-Type Semiconducting Amphiphiles 176(5)
5.2.2 n-Type Semiconducting Amphiphiles 181(2)
5.2.3 Miscellaneous π-Conjugated 183(3)
Amphiphiles
5.2.4 Multi-chromophoric p-n Amphiphiles 186(4)
5.2.5 Supramolecular Amphiphiles 190(1)
5.3 Optical Functionality 191(7)
5.4 Conclusion 198(1)
References 198(5)
Chapter 6 Chiral Supramolecular Structures as 203(23)
Spin Filters
Ron Naaman
David H. Waldeck
6.1 Introduction 203(2)
6.2 Theory 205(3)
6.2.1 Spin-Orbit Coupling Magnitude 207(1)
6.2.2 Resonances 207(1)
6.3 Experimental Results 208(10)
6.3.1 Spin-Dependent Photoelectron 208(3)
Transmission
6.3.2 Spin-Dependent Conductivity 211(7)
6.4 Applications and Implications 218(4)
6.4.1 Memory Device 218(4)
6.5 Conclusions 222(1)
Acknowledgements 223(1)
References 223(3)
Chapter 7 Solution Processed Multilayer Organic 226(47)
Light Emitting Diodes
Manuel Auer
Leonid Pevzner
Stefan Sax
Emil J.W. List-Kratochvil
7.1 Introduction 226(3)
7.2 Multilayer Structures from the same 229(6)
Solvent by Diverse Fabrication Strategies
7.2.1 Blade Coating 230(1)
7.2.2 Liquid Buffer Layer 231(1)
7.2.3 Electrospray Deposition 232(1)
7.2.4 Transfer Printing 233(1)
7.2.5 Lamination 234(1)
7.3 Multilayer Structures from the same 235(15)
Solvent by Chemical Reaction
7.3.1 Cross-Linking by the Addition of 236(10)
Reactive Groups
7.3.2 Thermal Stabilization 246(1)
7.3.3 The Precursor Route 247(1)
7.3.4 Universal Cross-Linking 248(2)
7.4 Multilayer Structures from Orthogonal 250(15)
Solvents
7.4.1 Polar Solvents 252(5)
7.4.2 Fluorinated Solvents 257(2)
7.4.3 Hybrid Approaches 259(6)
7.5 Conclusion and Outlook 265(1)
Acknowledgements 266(1)
References 266(7)
Chapter 8 Concepts and Modeling for Charge 273(36)
Transport in Organic Electronic Materials
K. Sebastian Radke
F. Ortmann
G. Cuniberti
8.1 Introduction 273(2)
8.2 Kubo Formalism 275(2)
8.3 Ab Initio Material Parameters and 277(5)
Disorder Models
8.3.1 Hamiltonian for Coupled Electrons 277(2)
and Phonons
8.3.2 Ab Initio Material Parameters 279(3)
8.3.3 Disorder Models 282(1)
8.4 Polaron Transport Approaches 282(7)
8.4.1 Three-Dimensional Anisotropic 283(3)
Mobility
8.4.2 Limiting Cases 286(3)
8.5 Quantum Dynamic Charge Propagation 289(15)
Techniques
8.5.1 Introduction 289(2)
8.5.2 Polaron Theory Based Charge 291(1)
Propagation
8.5.3 Mixed Quantum-Classical Propagation 292(12)
8.6 R駸um? 304(1)
Acknowledgements 305(1)
References 305(4)
Chapter 9 Simulations of Morphology and Charge 309(54)
Transport in Supramolecular Organic Materials
Denis Andrienko
9.1 Introduction 309(5)
9.2 Morphology Simulations 314(6)
9.2.1 first-Principles Calculations 315(1)
9.2.2 Atomistic Models 316(2)
9.2.3 Coarse-Grained Models 318(2)
9.3 Charge Transport 320(17)
9.3.1 Diabatic States 321(3)
9.3.2 Charge Transfer Rates 324(1)
9.3.3 Electronic Coupling Elements 325(3)
9.3.4 Reorganization Energies 328(1)
9.3.5 Driving Forces 328(7)
9.3.6 Charge Mobility 335(2)
9.4 Finite-Size Effects 337(1)
9.5 Stochastic Models 338(1)
9.6 Interfaces and Long-Range Interactions 339(2)
9.7 Excited States 341(1)
9.8 Software 342(2)
9.9 Outlook 344(1)
Acknowledgements 344(1)
References 345(18)
Subject Index 363