新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Correspondence Analysis : Theory, Practice and New Strategies
发布日期:2015-11-24  浏览

Correspondence Analysis : Theory, Practice and New Strategies

[Book Description]

A comprehensive overview of the internationalisation of correspondence analysis Correspondence Analysis: Theory, Practice and New Strategies examines the key issues of correspondence analysis, and discusses the new advances that have been made over the last 20 years. The main focus of this book is to provide a comprehensive discussion of some of the key technical and practical aspects of correspondence analysis, and to demonstrate how they may be put to use. Particular attention is given to the history and mathematical links of the developments made. These links include not just those major contributions made by researchers in Europe (which is where much of the attention surrounding correspondence analysis has focused) but also the important contributions made by researchers in other parts of the world. Key features include: * A comprehensive international perspective on the key developments of correspondence analysis. * Discussion of correspondence analysis for nominal and ordinal categorical data. * Discussion of correspondence analysis of contingency tables with varying association structures (symmetric and non-symmetric relationship between two or more categorical variables).* Extensive treatment of many of the members of the correspondence analysis family for two-way, three-way and multiple contingency tables. Correspondence Analysis offers a comprehensive and detailed overview of this topic which will be of value to academics, postgraduate students and researchers wanting a better understanding of correspondence analysis. Readers interested in the historical development, internationalisation and diverse applicability of correspondence analysis will also find much to enjoy in this book.

[Table of Contents]
Foreword                                           xv
Preface                                            xvii
Part One Introduction
  1 Data Visualisation                             3   (41)
    1.1 A Very Brief Introduction to Data          3   (7)
    Visualisation
      1.1.1 A Very Brief History                   3   (1)
      1.1.2 Introduction to Visualisation Tools    4   (2)
      for Numerical Data
      1.1.3 Introduction to Visualisation Tools    6   (4)
      for Univariate Categorical Data
    1.2 Data Visualisation for Contingency         10  (2)
    Tables
      1.2.1 Fourfold Displays                      11  (1)
    1.3 Other Plots                                12  (1)
    1.4 Studying Exposure to Asbestos              13  (12)
      1.4.1 Asbestos and Irving J. Selikoff        13  (4)
      1.4.2 Selikoff's Data                        17  (1)
      1.4.3 Numerical Analysis of Selikoff's       17  (1)
      Data
      1.4.4 A Graphical Analysis of Selikoff's     18  (2)
      Data
      1.4.5 Classical Correspondence Analysis      20  (2)
      of Selikoff's Data
      1.4.6 Other Methods of Graphical Analysis    22  (3)
    1.5 Happiness Data                             25  (4)
    1.6 Correspondence Analysis Now                29  (5)
      1.6.1 A Bibliographic Taste                  29  (1)
      1.6.2 The Increasing Popularity of           29  (3)
      Correspondence Analysis
      1.6.3 The Growth of the Correspondence       32  (2)
      Analysis Family Tree
    1.7 Overview of the Book                       34  (1)
    1.8 R Code                                     35  (1)
    References                                     36  (8)
  2 Pearson's Chi-Squared Statistic                44  (27)
    2.1 Introduction                               44  (1)
    2.2 Pearson's Chi-Squared Statistic            44  (7)
      2.2.1 Notation                               44  (1)
      2.2.2 Measuring the Departure from           45  (2)
      Independence
      2.2.3 Pearson's Chi-Squared Statistic        47  (1)
      2.2.4 Other xイ Measures of Association       48  (1)
      2.2.5 The Power Divergence Statistic         49  (1)
      2.2.6 Dealing with the Sample Size           50  (1)
    2.3 The Goodman-Kruskal Tau Index              51  (1)
      2.3.1 Other Measures and Issues              52  (1)
    2.4 The 2 x 2  Contingency Table               52  (2)
      2.4.1 Yates' Continuity Correction           53  (1)
    2.5 Early Contingency Tables                   54  (7)
      2.5.1 The Impact of Adolph Quetelet          55  (3)
      2.5.2 Gavarret's (1840) Legitimate           58  (1)
      Children Data
      2.5.3 Finley's (1884) Tornado Data           58  (1)
      2.5.4 Galton's (1892) Fingerprint Data       59  (2)
      2.5.5 Final Comments                         61  (1)
    2.6 R Code                                     61  (6)
      2.6.1 Expectation and Variance of the        61  (1)
      Pearson Chi-Squared Statistic
      2.6.2 Pearson's Chi-Squared Test of          62  (2)
      Independence
      2.6.3 The Cressie-Read Statistic             64  (3)
    References                                     67  (4)
Part Two Correspondence Analysis of Two-Way        71  (302)
Contingency Tables
  3 Methods of Decomposition                       73  (47)
    3.1 Introduction                               73  (1)
    3.2 Reducing Multidimensional Space            73  (1)
    3.3 Profiles and Cloud of Points               74  (5)
    3.4 Property of Distributional Equivalence     79  (1)
    3.5 The Triplet and Classical Reciprocal       79  (5)
    Averaging
      3.5.1 One-Dimensional Reciprocal Averaging   80  (1)
      3.5.2 Matrix Form of One-Dimensional         81  (2)
      Reciprocal Averaging
      3.5.3 M-Dimensional Reciprocal Averaging     83  (1)
      3.5.4 Some Historical Comments               83  (1)
    3.6 Solving the Triplet Using                  84  (2)
    Eigen-Decomposition
      3.6.1 The Decomposition                      84  (1)
      3.6.2 Example                                85  (1)
    3.7 Solving the Triplet Using Singular         86  (3)
    Value Decomposition
      3.7.1 The Standard Decomposition             86  (2)
      3.7.2 The Generalised Decomposition          88  (1)
    3.8 The Generalised Triplet and Reciprocal     89  (2)
    Averaging
    3.9 Solving the Generalised Triplet Using      91  (9)
    Gram-Schmidt Process
      3.9.1 Ordered Categorical Variables and a    91  (1)
      priori Scores
      3.9.2 On Finding Orthogonalised Vectors      92  (2)
      3.9.3 A Recurrence Formulae Approach         94  (2)
      3.9.4 Changing the Basis Vector              96  (1)
      3.9.5 Generalised Correlations               97  (3)
    3.10 Bivariate Moment Decomposition            100 (1)
    3.11 Hybrid Decomposition                      100 (3)
      3.11.1 An Alternative Singly Ordered         102 (1)
      Approach
    3.12 R Code                                    103 (6)
      3.12.1 Eigen-Decomposition in R              103 (1)
      3.12.2 Singular Value Decomposition in R     103 (1)
      3.12.3 Singular Value Decomposition for      104 (2)
      Matrix Approximation
      3.12.4 Generating Emerson's Polynomials      106 (3)
    3.13 A Preliminary Graphical Summary           109 (3)
    3.14 Analysis of Analgesic Drugs               112 (3)
    References                                     115 (5)
  4 Simple Correspondence Analysis                 120 (57)
    4.1 Introduction                               120 (1)
    4.2 Notation                                   121 (1)
    4.3 Measuring Departures from Complete         122 (2)
    Independence
      4.3.1 The 'Duplication Constant'             123 (1)
      4.3.2 Pearson Ratios                         123 (1)
    4.4 Decomposing the Pearson Ratio              124 (2)
    4.5 Coordinate Systems                         126 (10)
      4.5.1 Standard Coordinates                   126 (1)
      4.5.2 Principal Coordinates                  127 (5)
      4.5.3 Biplot Coordinates                     132 (4)
    4.6 Distances                                  136 (4)
      4.6.1 Distance from the Origin               136 (1)
      4.6.2 Intra-Variable Distances and the Lp    137 (1)
      Metric
      4.6.3 Inter-Variable Distances               138 (2)
    4.7 Transition Formulae                        140 (1)
    4.8 Moments of the Principal Coordinates       141 (4)
      4.8.1 The Mean of ナm                        142 (1)
      4.8.2 The Variance of ナm                    142 (1)
      4.8.3 The Skewness of ナm                    143 (1)
      4.8.4 The Kurtosis of ナm                    143 (1)
      4.8.5 Moments of the Asbestos Data           144 (1)
    4.9 How Many Dimensions to Use?                145 (2)
    4.10 R Code                                    147 (7)
    4.11 Other Theoretical Issues                  154 (2)
    4.12 Some Applications of Correspondence       156 (2)
    Analysis
    4.13 Analysis of a Mother's Attachment to      158 (7)
    Her Child
    References                                     165 (12)
  5 Non-Symmetrical Correspondence Analysis        177 (39)
    5.1 Introduction                               177 (3)
    5.2 The Goodman-Kruskal Tau Index              180 (6)
      5.2.1 The Tau Index as a Measure of the      180 (2)
      Increase in Predictability
      5.2.2 The Tau Index in the Context of        182 (1)
      ANOVA
      5.2.3 The Sensitivity of τ               182 (3)
      5.2.4 A Demonstration: Revisiting            185 (1)
      Selikoff s Asbestos Data
    5.3 Non-Symmetrical Correspondence Analysis    186 (2)
      5.3.1 The Centred Column Profile Matrix      186 (1)
      5.3.2 Decomposition of τ                 187 (1)
    5.4 The Coordinate Systems                     188 (9)
      5.4.1 Standard Coordinates                   188 (1)
      5.4.2 Principal Coordinates                  189 (4)
      5.4.3 Biplot Coordinates                     193 (4)
    5.5 Transition Formulae                        197 (2)
      5.5.1 Supplementary Points                   198 (1)
      5.5.2 Reconstruction Formulae                198 (1)
    5.6 Moments of the Principal Coordinates       199 (2)
      5.6.1 The Mean of ナm                        199 (1)
      5.6.2 The Variance of ナm                    200 (1)
      5.6.3 The Skewness of ナm                    201 (1)
      5.6.4 The Kurtosis of ナm                    201 (1)
    5.7 The Distances                              201 (3)
      5.7.1 Column Distances                       201 (2)
      5.7.2 Row Distances                          203 (1)
    5.8 Comparison with Simple Correspondence      204 (1)
    Analysis
    5.9 R Code                                     204 (5)
    5.10 Analysis of a Mother's Attachment to      209 (3)
    Her Child
    References                                     212 (4)
  6 Ordered Correspondence Analysis                216 (35)
    6.1 Introduction                               216 (5)
    6.2 Pearson's Ratio and Bivariate Moment       221 (1)
    Decomposition
    6.3 Coordinate Systems                         222 (11)
      6.3.1 Standard Coordinates                   222 (1)
      6.3.2 The Generalised Correlations           223 (2)
      6.3.3 Principal Coordinates                  225 (4)
      6.3.4 Location, Dispersion and Higher        229 (1)
      Order Components
      6.3.5 The Correspondence Plot and            230 (2)
      Generalised Correlations
      6.3.6 Impact on the Choice of Scores         232 (1)
    6.4 Artificial Data Revisited                  233 (3)
      6.4.1 On the Structure of the Association    233 (1)
      6.4.2 A Graphical Summary of the             233 (1)
      Association
      6.4.3 An Interpretation of the Axes and      234 (1)
      Components
      6.4.4 The Impact of the Choice of Scores     235 (1)
    6.5 Transition Formulae                        236 (2)
    6.6 Distance Measures                          238 (1)
      6.6.1 Distance from the Origin               238 (1)
      6.6.2 Intra-Variable Distances               239 (1)
    6.7 Singly Ordered Analysis                    239 (2)
    6.8 R Code                                     241 (7)
      6.8.1 Generalised Correlations and           241 (4)
      Principal Inertias
      6.8.2 Doubly Ordered Correspondence          245 (3)
      Analysis
    References                                     248 (3)
  7 Ordered Non-Symmetrical Correspondence         251 (51)
  Analysis
    7.1 Introduction                               251 (1)
    7.2 General Considerations                     252 (2)
      7.2.1 Orthogonal Polynomials Instead of      253 (1)
      Singular Vectors
    7.3 Doubly Ordered Non-Symmetrical             254 (3)
    Correspondence Analysis
      7.3.1 Bivariate Moment Decomposition         254 (1)
      7.3.2 Generalised Correlations in            255 (2)
      Bivariate Moment Decomposition
    7.4 Singly Ordered Non-Symmetrical             257 (2)
    Correspondence Analysis
      7.4.1 Hybrid Decomposition for an Ordered    257 (1)
      Predictor Variable
      7.4.2 Hybrid Decomposition in the Case of    258 (1)
      Ordered Response Variables
      7.4.3 Generalised Correlations in Hybrid     258 (1)
      Decomposition
    7.5 Coordinate Systems for Ordered             259 (6)
    Non-Symmetrical Correspondence Analysis
      7.5.1 Polynomial Plots for Doubly Ordered    260 (2)
      Non-Symmetrical Correspondence Analysis
      7.5.2 Polynomial Biplot for Doubly           262 (1)
      Ordered Non-Symmetrical Correspondence
      Analysis
      7.5.3 Polynomial Plot for Singly Ordered     262 (1)
      Non-Symmetrical Correspondence Analysis
      with an Ordered Predictor Variable
      7.5.4 Polynomial Biplot for Singly           263 (1)
      Ordered Non-Symmetrical Correspondence
      Analysis with an Ordered Predictor
      Variable
      7.5.5 Polynomial Plot for Singly Ordered     264 (1)
      Non-Symmetrical Correspondence Analysis
      with an Ordered Response Variable
      7.5.6 Polynomial Biplot for Singly           265 (1)
      Ordered Non-Symmetrical Correspondence
      Analysis with an Ordered Response Variable
    7.6 Tests of Asymmetric Association            265 (1)
    7.7 Distances in Ordered Non-Symmetrical       266 (3)
    Correspondence Analysis
      7.7.1 Distances in Doubly Ordered            267 (2)
      Non-Symmetrical Correspondence Analysis
      7.7.2 Distances in Singly Ordered            269 (1)
      Non-Symmetrical Correspondence Analysis
    7.8 Doubly Ordered Non-Symmetrical             269 (8)
    Correspondence of Asbestos Data
      7.8.1 Trends                                 270 (7)
    7.9 Singly Ordered Non-Symmetrical             277 (6)
    Correspondence Analysis of Drug Data
      7.9.1 Predictability of Ordered Rows         278 (5)
      Given Columns
    7.10 R Code for Ordered Non-Symmetrical        283 (17)
    Correspondence Analysis
    References                                     300 (2)
  8 External Stability and Confidence Regions      302 (35)
    8.1 Introduction                               302 (1)
    8.2 On the Statistical Significance of a       303 (1)
    Point
    8.3 Circular Confidence Regions for            304 (2)
    Classical Correspondence Analysis
    8.4 Elliptical Confidence Regions for          306 (5)
    Classical Correspondence Analysis
      8.4.1 The Information in the Optimal         306 (2)
      Correspondence Plot
      8.4.2 The Information in the First Two       308 (1)
      Dimensions
      8.4.3 Eccentricity of Elliptical Regions     309 (1)
      8.4.4 Comparison of Confidence Regions       309 (2)
    8.5 Confidence Regions for Non-Symmetrical     311 (2)
    Correspondence Analysis
      8.5.1 Circular Regions in Non-Symmetrical    312 (1)
      Correspondence Analysis
      8.5.2 Elliptical Regions in                  312 (1)
      Non-Symmetrical Correspondence Analysis
    8.6 Approximate p-values and Classical         313 (2)
    Correspondence Analysis
      8.6.1 Approximate p-values Based on          313 (1)
      Confidence Circles
      8.6.2 Approximate p-values Based on          314 (1)
      Confidence Ellipses
    8.7 Approximate p-values and                   315 (1)
    Non-Symmetrical Correspondence Analysis
    8.8 Bootstrap Elliptical Confidence Regions    315 (1)
    8.9 Ringrose's Bootstrap Confidence Regions    316 (2)
      8.9.1 Confidence Ellipses and Covariance     317 (1)
      Matrix
    8.10 Confidence Regions and Selikoff s         318 (4)
    Asbestos Data
    8.11 Confidence Regions and Mother-Child       322 (3)
    Attachment Data
    8.12 R Code                                    325 (10)
      8.12.1 Calculating the Path of a             326 (1)
      Confidence Ellipse
      8.12.2 Constructing Elliptical Regions in    327 (8)
      a Correspondence Plot
    References                                     335 (2)
  9 Variants of Correspondence Analysis            337 (36)
    9.1 Introduction                               337 (1)
    9.2 Correspondence Analysis Using Adjusted     337 (3)
    Standardised Residuals
    9.3 Correspondence Analysis Using the          340 (2)
    Freeman-Tukey Statistic
    9.4 Correspondence Analysis ofRanked Data     342 (1)
    9.5 R Code                                     343 (10)
      9.5.1 Adjusted Standardised Residuals        343 (6)
      9.5.2 Freeman-Tukey Statistic                349 (4)
    9.6 The Correspondence Analysis Family         353 (12)
      9.6.1 Detrended Correspondence Analysis      353 (1)
      9.6.2 Canonical Correspondence Analysis      354 (1)
      9.6.3 Inverse Correspondence Analysis        355 (1)
      9.6.4 Ordered Correspondence Analysis        355 (1)
      9.6.5 Grade Correspondence Analysis          355 (1)
      9.6.6 Symbolic Correspondence Analysis       356 (1)
      9.6.7 Correspondence Analysis of             356 (4)
      Proximity Data
      9.6.8 Residual (Scaling) Correspondence      360 (2)
      Analysis
      9.6.9 Log-Ratio Correspondence Analysis      362 (2)
      9.6.10 Parametric Correspondence Analysis    364 (1)
      9.6.11 Subset Correspondence Analysis        364 (1)
      9.6.12 Foucart's Correspondence Analysis     365 (1)
    9.7 Other Techniques                           365 (1)
    References                                     366 (7)
Part Three Correspondence Analysis of Multi-Way    373 (144)
Contingency Tables
  10 Coding and Multiple Correspondence Analysis   375 (76)
    10.1 Introduction to Coding                    375 (2)
    10.2 Coding Data                               377 (5)
      10.2.1 B-Splines                             377 (3)
      10.2.2 Crisp Coding                          380 (2)
      10.2.3 Fuzzy Coding                          382 (1)
    10.3 Coding Ordered Categorical Variables      382 (2)
    by Orthogonal Polynomials
    10.4 Burt Matrix                               384 (2)
    10.5 An Introduction to Multiple               386 (2)
    Correspondence Analysis
    10.6 Multiple Correspondence Analysis          388 (7)
      10.6.1 Notation                              388 (1)
      10.6.2 Decomposition Methods                 389 (4)
      10.6.3 Coordinates, Transition Formulae      393 (2)
      and Adjusted Inertia
    10.7 Variants of Multiple Correspondence       395 (3)
    Analysis
      10.7.1 Joint Correspondence Analysis         396 (1)
      10.7.2 Stacking and Concatenation            397 (1)
    10.8 Ordered Multiple Correspondence           398 (7)
    Analysis
      10.8.1 Orthogonal Polynomials in Multiple    398 (1)
      Correspondence Analysis
      10.8.2 Hybrid Decomposition of Multiple      399 (1)
      Indicator Tables
      10.8.3 Two Ordered Variables and Their       400 (1)
      Contingency Table
      10.8.4 Test of Statistical Significance      401 (2)
      10.8.5 Properties of Ordered Multiple        403 (1)
      Correspondence Analysis
      10.8.6 Graphical Displays in Ordered         404 (1)
      Multiple Correspondence Analysis
    10.9 Applications                              405 (12)
      10.9.1 Customer Satisfaction in Health       406 (5)
      Care Services
      10.9.2 Two Quality Aspects                   411 (6)
    10.10 R Code                                   417 (27)
      10.10.1 B-Spline Function                    417 (4)
      10.10.2 Crisp and Fuzzy Coding Using         421 (4)
      B-Splines in R
      10.10.3 Crisp Coding and the Burt Table      425 (3)
      by Indicator Functions in R
      10.10.4 Classical and Multiple               428 (16)
      Correspondence Analysis in R
    References                                     444 (7)
  11 Symmetrical and Non-Symmetrical Three-Way     451 (66)
  Correspondence Analysis
    11.1 Introduction                              451 (2)
    11.2 Notation                                  453 (1)
    11.3 Symmetric and Asymmetric Association      454 (1)
    in Three-Way Contingency Tables
    11.4 Partitioning Three-Way Measures of        455 (8)
    Association
      11.4.1 Partitioning Pearson's Three-Way      457 (1)
      Statistic
      11.4.2 Partitioning Marcotorchino's and      458 (2)
      Gray-William's Three-Way Indices
      11.4.3 Marcotorchino's Index                 460 (1)
      11.4.4 Partitioning the Three-Way Delta      461 (2)
      Index
      11.4.5 Three-Way Delta Index                 463 (1)
    11.5 Formal Tests of Predictability            463 (3)
      11.5.1 Testing Pearson's Statistic           464 (1)
      11.5.2 Testing the Marcotorchino's Index     464 (1)
      11.5.3 Testing the Delta Index               465 (1)
      11.5.4 Discussion                            465 (1)
    11.6 Tucker3 Decomposition for Three-Way       466 (1)
    Tables
    11.7 Correspondence Analysis of Three-Way      467 (3)
    Contingency Tables
      11.7.1 Symmetrically Associated Variables    467 (1)
      11.7.2 Asymmetrically Associated Variables   468 (1)
      11.7.3 Additional Property                   469 (1)
    11.8 Modelling of Partial and Marginal         470 (1)
    Dependence
    11.9 Graphical Representation                  471 (3)
      11.9.1 Interactive Plot                      471 (1)
      11.9.2 Interactive Biplot                    472 (2)
      11.9.3 Category Contribution                 474 (1)
    11.10 On the Application of Partitions         474 (3)
      11.10.1 Olive Data: Partitioning the         474 (2)
      Asymmetric Association
      11.10.2 Job Satisfaction Data:               476 (1)
      Partitioning the Asymmetric Association
    11.11 On the Application of Three-Way          477 (13)
    Correspondence Analysis
      11.11.1 Job Satisfaction and Three-Way       477 (6)
      Symmetrical Correspondence Analysis
      11.11.2 Job Satisfaction and Three-Way       483 (7)
      Non-Symmetrical Correspondence Analysis
    11.12 R Code                                   490 (21)
    References                                     511 (6)
Part Four The Computation of Correspondence        517 (28)
Analysis
  12 Computing and Correspondence Analysis         519 (26)
    12.1 Introduction                              519 (1)
    12.2 A Look Through Time                       519 (4)
      12.2.1 Pre-1990                              519 (1)
      12.2.2 From 1990 to 2000                     520 (2)
      12.2.3 The Early 2000s                       522 (1)
    12.3 The Impact of R                           523 (10)
      12.3.1 Overview of Correspondence            523 (1)
      Analysis in R
      12.3.2 MASS                                  524 (1)
      12.3.3 Nenadic and Greenacre's (2007) ca     525 (2)
      12.3.4 Murtagh (2005)                        527 (3)
      12.3.5 ade4                                  530 (3)
    12.4 Some Stand-Alone Programs                 533 (7)
      12.4.1 JMP                                   533 (1)
      12.4.2 SPSS                                  533 (1)
      12.4.3 PAST                                  534 (1)
      12.4.4 DtmVic5.6+                            535 (5)
    References                                     540 (5)
Index                                              545

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上