新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Applied Diffusion Processes from Engineering to Finance
发布日期:2015-11-24  浏览

Applied Diffusion Processes from Engineering to Finance

[Book Description]

The aim of this book is to promote interaction between engineering, finance and insurance, as these three domains have many models and methods of solution in common for solving real-life problems. The authors point out the strict inter-relations that exist among the diffusion models used in engineering, finance and insurance. In each of the three fields, the basic diffusion models are presented and their strong similarities are discussed. Analytical, numerical and Monte Carlo simulation methods are explained with a view to applying them to obtain the solutions to the different problems presented in the book. Advanced topics such as nonlinear problems, Lévy processes and semi-Markov models in interactions with the diffusion models are discussed, as well as possible future interactions among engineering, finance and insurance.

[Table of Contents]
Introduction                                       xiii
    Chapter 1 Diffusion Phenomena and Models       1   (16)
      1.1 General presentation of diffusion        1   (5)
      process
      1.2 General balance equations                6   (4)
      1.3 Heat conduction equation                 10  (2)
      1.4 Initial and boundary conditions          12  (5)
    Chapter 2 Probabilistic Models of Diffusion    17  (30)
    Processes
      2.1 Stochastic differentiation               17  (2)
        2.1.1 Definition                           17  (1)
        2.1.2 Examples                             18  (1)
      2.2 Ito's formula                            19  (5)
        2.2.1 Stochastic differential of a         19  (1)
        product
        2.2.2 Ito's formula with time dependence   19  (2)
        2.2.3 Interpretation of Ito's formula      21  (1)
        2.2.4 Other extensions of Ito's formula    21  (3)
      2.3 Stochastic differential equations        24  (4)
      (SDE)
        2.3.1 Existence and unicity general        24  (4)
        theorem (Gikhman and Skorokhod)
        2.3.2 Solution of SDE under the            28  (1)
        canonical form
      2.4 Ito and diffusion processes              28  (4)
        2.4.1 Ito processes                        28  (1)
        2.4.2 Diffusion processes                  29  (2)
        2.4.3 Kolmogorov equations                 31  (1)
      2.5 Some particular cases of diffusion       32  (4)
      processes
        2.5.1 Reduced form                         32  (1)
        2.5.2 The OUV                              32  (2)
        (Ornstein-Uhlenbeck-Vasicek) SDE
        2.5.3 Solution of the SDE of               34  (2)
        Black-Scholes-Samuelson
      2.6 Multidimensional diffusion processes     36  (5)
        2.6.1 Multidimensional SDE                 36  (1)
        2.6.2 Multidimensional Ito and             36  (1)
        diffusion processes
        2.6.3 Properties of multidimensional       37  (1)
        diffusion processes
        2.6.4 Kolmogorov equations                 38  (3)
      2.7 The Stroock-Varadhan martingale          41  (1)
      characterization of diffusions (Karlin
      and Taylor)
      2.8 The Feynman-Kac formula (Platen and      42  (5)
      Heath)
        2.8.1 Terminal condition                   42  (1)
        2.8.2 Discounted payoff function           43  (1)
        2.8.3 Discounted payoff function and       44  (3)
        payoff rate
    Chapter 3 Solving Partial Differential         47  (38)
    Equations of Second Order
      3.1 Basic definitions on PDE of second       47  (4)
      order
        3.1.1 Notation                             47  (1)
        3.1.2 Characteristics                      48  (2)
        3.1.3 Canonical form of PDE                50  (1)
      3.2 Solving the heat equation                51  (14)
        3.2.1 Separation of variables              54  (1)
        3.2.2 Separation of variables in the       55  (2)
        rectangular Cartesian coordinates
        3.2.3 Orthogonality of functions           57  (1)
        3.2.4 Fourier series                       58  (1)
        3.2.5 Sturm-Liouville problem              59  (2)
        3.2.6 One-dimensional homogeneous          61  (4)
        problem in a finite medium
      3.3 Solution by the method of Laplace        65  (10)
      transform
        3.3.1 Definition of the Laplace            65  (2)
        transform
        3.3.2 Properties of the Laplace            67  (8)
        transform
      3.4 Green's functions                        75  (10)
        3.4.1 Green's function as auxiliary        76  (2)
        problem to solve diffusive problems
        3.4.2 Analysis for determination of        78  (7)
        Green's function
    Chapter 4 Problems in Finance                  85  (26)
      4.1 Basic stochastic models for stock        85  (5)
      prices
        4.1.1 The Black, Scholes and Samuelson     85  (4)
        model
        4.1.2 BSS model with deterministic         89  (1)
        variation of μ and σ
      4.2 The bond investments                     90  (3)
        4.2.1 Introduction                         90  (1)
        4.2.2 Yield curve                          91  (1)
        4.2.3 Yield to maturity for a financial    92  (1)
        investment and for a bond
      4.3 Dynamic deterministic continuous time    93  (5)
      model for instantaneous interest rate
        4.3.1 Instantaneous interest rate          93  (1)
        4.3.2 Particular cases                     94  (1)
        4.3.3 Yield curve associated with          94  (1)
        instantaneous interest rate
        4.3.4 Examples of theoretical models       95  (3)
      4.4 Stochastic continuous time dynamic       98  (12)
      model for instantaneous interest rate
        4.4.1 The OUV stochastic model             99  (6)
        4.4.2 The CIR model (1985)                 105 (5)
      4.5 Multidimensional Black and Scholes       110 (1)
      model
    Chapter 5 Basic PDE in Finance                 111 (34)
      5.1 Introduction to option theory            111 (4)
      5.2 Pricing the plain vanilla call with      115 (5)
      the Black-Scholes-Samuelson model
        5.2.1 The PDE of Black and Scholes         115 (3)
        5.2.2 The resolution of the PDE of         118 (2)
        Black and Scholes without dividend
        repartition
      5.3 Pricing no plain vanilla calls with      120 (7)
      the Black-Scholes-Samuelson model
        5.3.1 The Girsanov theorem                 121 (1)
        5.3.2 Application to the                   122 (5)
        Black-Scholes-Samuelson model
      5.4 Zero-coupon pricing under the            127 (18)
      assumption of no arbitrage
        5.4.1 Stochastic dynamics of zero          127 (3)
        coupons
        5.4.2 Application of the no arbitrage      130 (1)
        principle and risk premium
        5.4.3 Partial differential equation for    131 (3)
        the structure of zero coupons
        5.4.4 Values of zero coupons without       134 (7)
        arbitrage opportunity for particular
        cases
        5.4.5 Value of a call on zero coupon       141 (1)
        5.4.6 Option on bond with coupons          142 (2)
        5.4.7 A numerical example                  144 (1)
    Chapter 6 Exotic and American Options          145 (32)
    Pricing Theory
      6.1 Introduction                             145 (1)
      6.2 The Garman-Kohlhagen formula             146 (3)
      6.3 Binary or digital options                149 (1)
        6.3.1 Definition                           149 (1)
        6.3.2 Pricing of a call cash or nothing    149 (1)
        6.3.3 Case of the put cash or nothing      150 (1)
      6.4 "Asset or nothing" options               150 (2)
        6.4.1 Definition                           150 (1)
        6.4.2 Pricing a call asset or nothing      151 (1)
        6.4.3 Premium of the put asset or          151 (1)
        nothing
      6.5 Numerical examples                       152 (1)
      6.6 Path-dependent options                   153 (4)
        6.6.1 The barrier options                  153 (3)
        6.6.2 Lookback options                     156 (1)
        6.6.3 Asiatic (or average) options         157 (1)
      6.7 Multi-asset options                      157 (8)
        6.7.1 Definitions                          157 (1)
        6.7.2 The multi-dimensional Black and      158 (1)
        Scholes equation
        6.7.3 Outperformance or Margrabe option    159 (2)
        6.7.4 Other related type options           161 (2)
        6.7.5 General case                         163 (2)
      6.8 American options                         165 (12)
        6.8.1 Early exercise in case of no         165 (1)
        dividend repartition
        6.8.2 Early exercise in case of            165 (2)
        dividend repartition
        6.8.3 The formula of Barone-Adesi and      167 (7)
        Whaley (BAW): approximated formula for
        American options
        6.8.4 Discretization and simulation        174 (3)
    Chapter 7 Hitting Times for Diffusion          177 (42)
    Processes and Stochastic Models in Insurance
      7.1 Hitting or first passage times for       177 (16)
      some diffusion processes
        7.1.1 First definitions                    177 (2)
        7.1.2 Distribution of hitting times for    179 (2)
        the non-standard Brownian motion
        7.1.3 The Gaussian inverse (or normal      181 (2)
        inverse) distribution
        7.1.4 Other absorption problems for        183 (3)
        Brownian motion
        7.1.5 Other absorption problems for        186 (1)
        non-standard Brownian processes
        7.1.6 Results with probabilistic           187 (6)
        reasoning
      7.2 Merton's model for default risk          193 (8)
        7.2.1 Introduction                         193 (1)
        7.2.2 Merton's model                       194 (5)
        7.2.3 The Longstaff and Schwartz model     199 (2)
      7.3 Risk diffusion models for insurance      201 (18)
        7.3.1 Introduction                         201 (1)
        7.3.2 The diffusion process (Cox and       202 (3)
        Miller, Gerber)
        7.3.3 First ALM model (ALM I) (Janssen)    205 (7)
        7.3.4 Second ALM model (ALM II)            212 (7)
        (Janssen)
    Chapter 8 Numerical Methods                    219 (12)
      8.1 Introduction                             219 (1)
      8.2 Discretization and numerical             220 (2)
      differentiation
      8.3 Finite difference methods                222 (9)
    Chapter 9 Advanced Topics in Engineering:      231 (24)
    Nonlinear Models
      9.1 Nonlinear model in heat conduction       232 (1)
      9.2 Integral method applied to diffusive     233 (6)
      problems
      9.3 Integral method applied to nonlinear     239 (4)
      problems
      9.4 Use of transformations in nonlinear      243 (12)
      problems
        9.4.1 Kirchhoff transformation             243 (3)
        9.4.2 Similarity methods                   246 (9)
    Chapter 10 Levy Processes                      255 (22)
      10.1 Motivation                              255 (2)
      10.2 Notion of characteristic functions      257 (1)
      10.3 Levy processes                          257 (2)
      10.4 Levy-Khintchine formula                 259 (2)
      10.5 Examples of Levy processes              261 (3)
      10.6 Variance gamma (VG) process             264 (2)
      10.7 The Brownian-Poisson model with jumps   266 (9)
        10.7.1 Mixed arithmetic                    266 (3)
        Brownian-Poisson and geometric
        Brownian-Poisson processes
        10.7.2 Merton model with jumps             269 (2)
        10.7.3 Stochastic differential equation    271 (3)
        (SDE) for mixed arithmetic
        Brownian-Poisson and geometric
        Brownian-Poisson processes
        10.7.4 Value of a European call for the    274 (1)
        lognormal Merton model
      10.8 Risk neutral measures for Levy          275 (1)
      models in finance
      10.9 Conclusion                              276 (1)
    Chapter 11 Advanced Topics in Insurance:       277 (30)
    Copula Models and VaR Techniques
      11.1 Introduction                            277 (2)
      11.2 Sklar theorem (1959)                    279 (1)
      11.3 Particular cases and Frechet bounds     280 (8)
        11.3.1 Particular cases                    280 (1)
        11.3.2 Frechet bounds                      281 (1)
        11.3.3 Examples of copula                  281 (4)
        11.3.4 The normal copula                   285 (2)
        11.3.5 Estimation of copula                287 (1)
      11.4 Dependence                              288 (5)
        11.4.1 Conditional probabilities           288 (1)
        11.4.2 The correlation coefficient         289 (4)
        τ of Kendall
      11.5 Applications in finance: pricing of     293 (3)
      the bivariate digital put option
      11.6 VaR application in insurance            296 (11)
        11.6.1 VaR of one risky asset              296 (7)
        11.6.2 The VaR concept in relation with    303 (4)
        Solvency II
    Chapter 12 Advanced Topics in Finance:         307 (34)
    Semi-Markov Models
      12.1 Introduction                            307 (1)
      12.2 Homogeneous semi-Markov process         308 (20)
        12.2.1 Basic definitions                   308 (2)
        12.2.2 Basic properties                    310 (4)
        12.2.3 Particular cases of MRP             314 (3)
        12.2.4 Asymptotic behavior of SMP          317 (1)
        12.2.5 Non-homogeneous semi-Markov         318 (2)
        process
        12.2.6 Discrete time homogeneous and       320 (3)
        non-homogeneous semi-Markov processes
        12.2.7 Homogeneous semi-Markov backward    323 (2)
        processes in discrete time
        12.2.8 Discrete time non-homogeneous       325 (3)
        backward semi-Markov processes
      12.3 Semi-Markov option model                328 (4)
        12.3.1 General model                       328 (2)
        12.3.2 Particular case: semi-Markov        330 (1)
        Black-Scholes model
        12.3.3 Numerical application for the       330 (2)
        semi-Markov Black-Scholes model
      12.4 Semi-Markov VaR models                  332 (7)
        12.4.1 The normal power (NP)               332 (1)
        approximation
        12.4.2 The Cornish-Fisher approximation    333 (1)
        12.4.3 VaR computation with a Pareto       333 (2)
        distribution
        12.4.4 VaR semi-Markov models              335 (1)
        12.4.5 Numerical applications for the      336 (2)
        semi-Markov VaR model
        12.4.6 Semi-Markov extension of the        338 (1)
        Merton's model
      12.5 Conclusion                              339 (2)
    Chapter 13 Monte Carlo Semi-Markov             341 (38)
    Simulation Methods
      13.1 Presentation of our simulation model    341 (4)
      13.2 The semi-Markov Monte Carlo model in    345 (5)
      a homogeneous environment
      13.3 A credit risk example                   350 (12)
        13.3.1 Discrete time homogeneous           350 (2)
        semi-Markov reliability model
        13.3.2 A classical example of              352 (3)
        reliability for a mechanical system
        13.3.3 The semi-Markov reliability         355 (3)
        credit risk models
        13.3.4 A simplified example                358 (4)
      13.4 Semi-Markov Monte Carlo with initial    362 (1)
      recurrence backward time in homogeneous
      case
      13.5 The SMMC applied to claim reserving     363 (3)
      problem
      13.6 An example of claim reserving           366 (13)
      calculation
        13.6.1 Example of the merging process      368 (11)
Conclusion                                         379 (2)
Bibliography                                       381 (12)
Index                                              393

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上