Conjugated Polymers
[Book Description]
Conjugated polymers are gaining a lot of interest due to their inherent functional properties and applications in plastic electronics. Their characteristic charge transporting and conducting properties produces features including coloration, photoluminescence, electroluminescence, photoconductivity, and electrochromism. In order to develop new functional polymers, researchers need the background information on the synthesis of the different polymer systems. Conjugated Polymers focuses on the practical preparation of conjugated polymers with each chapter discussing a particular type of conjugated polymer including a general explanation of the polymer, experimental details for synthesis and characterization. Edited by world leading experts in the field of conjugated polymer synthesis, the book serves as a convenient guide for advanced undergraduate level and above.
[Table of Contents]
Chapter 1 Pi-Conjugated Polymers: The 1 (11)
Importance of Polymer Synthesis
John R. Reynolds
1.1 Historical Perspective 1 (2)
1.2 Considerations in Polymerizations 3 (1)
1.3 Side Chains, Processability and 4 (1)
Molecular Weight
1.4 Structural Control via Repeat Unit 5 (4)
and Functionality
1.5 Summary 9 (3)
Acknowledgements 10 (1)
References 10 (2)
Chapter 2 Polyacetylenes 12 (25)
Kazuo Akagi
2.1 Introduction 12 (17)
2.1.1 Polyacetylene (PA) 13 (5)
2.1.2 Helical Polyacetylene (H-PA) 18 (6)
2.1.3 H-PA with Bundle-Free Fibril 24 (4)
Morphology
2.1.4 Morphology-Retaining 28 (1)
Carbonization of H-PA
2.2 Experimental Procedures 29 (8)
2.2.1 Synthesis of Shirakawa-Type PA 29 (1)
2.2.2 Synthesis of Naarmann and 29 (1)
Theophilou-Type PA
2.2.3 Synthesis of Tsukamoto-Type PA 30 (1)
2.2.4 Synthesis of High Mechanical 30 (1)
Modulus and Strength PA
2.2.5 Synthesis of Directly Aligned PA 31 (1)
2.2.6 Synthesis of Helical PA 32 (1)
2.2.7 Synthesis of Nematic Liquid 32 (1)
Crystals and Chiral Dopants
References 33 (4)
Chapter 3 Substituted Polyacetylenes 37 (24)
Fumio Sanda
Masashi Shiotsuki
Toshio Masuda
3.1 Introduction 37 (5)
3.1.1 Polymers of Aromatic 38 (1)
Monosubstituted Acetylenes
3.1.2 Polymers of Aliphatic 39 (1)
Monosubstituted Acetylenes
3.1.3 Polymers of Aromatic 39 (1)
Disubstituted Acetylenes
3.1.4 Polymers of Aliphatic 40 (1)
Disubstituted Acetylenes
3.1.5 Functions of Substituted 41 (1)
Polyacetylenes
3.2 Experimental Procedures 42 (19)
3.2.1 Materials and General 42 (1)
Polymerization Procedures
3.2.2 Polymers of Aromatic 43 (6)
Monosubstituted Acetylenes
3.2.3 Polymers of Aliphatic 49 (2)
Monosubstituted Acetylenes
3.2.4 Polymers of Aromatic 51 (3)
Disubstituted Acetylenes
3.2.5 Polymers of Aliphatic 54 (2)
Disubstituted Acetylenes
3.2.6 Characterization and Remarks 56 (2)
References 58 (3)
Chapter 4 Polyphenylenes 61 (26)
Takakazu Yamamoto
4.1 Introduction 61 (5)
4.1.1 Polyphenylenes without Side Chain 62 (3)
4.1.2 Polyphenylenes with Side Chains 65 (1)
or Side Rings
4.2 Experimental Procedures 66 (21)
4.2.1 Materials and General 66 (1)
Polymerization Procedures
4.2.2 Polyphenylenes without Side Chain 67 (4)
4.2.3 Polyphenylenes with Side Chains 71 (6)
4.2.4 Polyphenylenes with -N=N- or -NR- 77 (2)
Binding Units
4.2.5 Polyphenylenes with Conjugated 79 (1)
Side Rings
4.2.6 Polyphenylenes with -SO3M or -NO2 80 (1)
Side Chains Prepared via Ullmann
Coupling
4.2.7 Characterization and Remarks 81 (1)
References 82 (5)
Chapter 5 Polyfluorenes 87 (26)
Byung Jun Jung
Hong-Ku Shim
Do-Hoon Hwang
5.1 Introduction 87 (1)
5.2 Experimental Procedures 88 (11)
5.2.1 Oxidative Polymerization 88 (1)
5.2.2 Yamamoto Coupling Polymerization 89 (3)
5.2.3 Suzuki Coupling Polymerization 92 (7)
5.3 Developments in Polymerization 99 (2)
5.3.1 Microwave-Assisted Polymerization 99 (1)
5.3.2 Other Synthetic Techniques 99 (1)
5.3.3 New Polymerization Methods 99 (1)
5.3.4 Purification of Polymers 100(1)
5.4 Various Applications of Polyfluorenes 101(6)
5.4.1 Polymer Light-Emitting Diodes 101(4)
(PLEDs)
5.4.2 Sensing Applications 105(1)
5.4.3 Polymer Transistors and Solar 105(2)
Cells
5.4.4 Electron Injection Layers in 107(1)
Organic Electronic Devices
5.5 Remarks 107(6)
References 108(5)
Chapter 6 Poly(carbazolylene)s 113(21)
Sung Ju Cho
Andrew C. Grimsdale
6.1 Introduction 113(8)
6.1.1 Poly(3,6-carbazolylene)s 114(2)
6.1.2 Poly(1,8-carbazolylene)s 116(1)
6.1.3 Poly(2,7-carbazolylene)s 116(3)
6.1.4 Poly(3,9-carbazolylene)s 119(1)
6.1.5 Ladder-Type Polycarbazolylenes 120(1)
6.2 Experimental Procedures 121(13)
6.2.1 Materials and General Procedures 121(1)
6.2.2 Poly(3,6-carbazolylene)s 121(2)
6.2.3 Poly(1,8-carbazolylene)s 123(1)
6.2.4 Poly(2,7-carbazolylene)s 124(4)
6.2.5 Poly(3,9-carbazolylene)s 128(1)
6.2.6 Ladder-Type Poly(carbazolylene)s 129(3)
References 132(2)
Chapter 7 Poly(phenylenevinylene)s 134(22)
Wallace W. H. Wong
Helga Seyler
Andrew B. Holmes
7.1 Introduction 134(1)
7.2 Methods of Synthesis 135(12)
7.2.1 Precursor Routes via 135(5)
Radical/Anionic Polymerization Mechanism
7.2.2 Direct Routes to PPVs: 140(4)
Step-growth Polycondensation
7.2.3 Ring-Opening Metathesis 144(1)
Polymerization
7.2.4 Alternative Routes 145(1)
7.2.5 Comparison of Syntheses and 146(1)
Summary
7.3 Experimental Procedures 147(9)
7.3.1 General Experimental Requirements 147(1)
7.3.2 Example Procedures 148(3)
References 151(5)
Chapter 8 Poly(p-phenyleneethynylene)s and 156(24)
Poly(aryleneethynylene)s
Uwe H. F. Bunz
8.1 Introduction 156(9)
8.1.1 Alkyl-PPEs and PAEs by Alkyne 159(2)
Metathesis
8.1.2 Alkyl-PPEs by Pd Catalysis 161(1)
8.1.3 Alkoxy-PPEs by Pd Catalysis 162(1)
8.1.4 Poly(fluorenyleneethynylene)s by 163(1)
Alkyne Metathesis
8.1.5 Other PAEs by Pd Catalysis 164(1)
8.1.6 Side-Chain Functionalized PPEs by 165(1)
Pd-Catalyzed Coupling
8.2 Experimental Procedures 165(15)
8.2.1 Materials and General 165(3)
Polymerization Procedures
8.2.2 Didodecyl-PPE 13b by Alkyne 168(1)
Metathesis of 12b
8.2.3 Sonogashira Reactions, General 168(3)
Remarks
8.2.4 Polyfluorenyleneethynylene by 171(1)
ADIMET
8.2.5 Quinoxaline-Containing PAEs 171(2)
8.2.6 Benzothiadiazole-Containing PAE 173(1)
8.2.7 Quinoline-Containing PAEs 173(1)
8.2.8 Grafted PPEs 174(2)
8.2.9 Characterization and Concluding 176(1)
Remarks
References 177(3)
Chapter 9 Polythiophenes 180(21)
Dahlia Haynes
Richard McCullough
9.1 Introduction 180(7)
9.1.1 Synthesis of Nonsubstituted 181(1)
Polythiophenes (PT)s
9.1.2 Synthesis of Regioirregular 182(2)
Substituted Polythiophenes (PST)
9.1.3 Synthesis of Regioregular 184(3)
Poly(Substituted Thiophenes) (rr-P3STs)
9.2 Experimental Procedures 187(9)
9.2.1 Nonsubsitiuted Polythiophenes 187(2)
9.2.2 Syntheses of Regioirregular 189(2)
Substituted Polythiophenes
9.2.3 Syntheses of Regioregular 191(5)
Substituted Polythiophenes
9.2.4 General Procedures and 196(1)
Characterization
9.3 Conclusion and Outlook 196(5)
References 197(4)
Chapter 10 Poly(oxythiophene)s 201(23)
Anil Kumar
Sreelekha P. Gopinathan
Rekha Singh
10.1 Introduction 201(3)
10.1.1 Polymerization Processes 202(1)
10.1.2 Poly(3-oxythiophene)s 202(1)
10.1.3 Poly(3,4-dioxythiophene)s 203(1)
10.1.4 Miscellaneous Poly(oxythiophene)s 204(1)
10.2 Experimental Procedures 204(14)
10.2.1 Oxidative Polymerization 208(7)
10.2.2 Transition-Metal-Assisted 215(3)
Polymerization
10.3 Concluding Remarks 218(6)
References 219(5)
Chapter 11 Polypyrroles 224(24)
Pierre Audebert
Fabien Miomandre
11.1 Introduction 224(1)
11.2 Polypyrrole Electrosynthesis 225(9)
11.2.1 Overview 225(3)
11.2.2 Experimental Procedures 228(6)
11.3 Polypyrroles -- Chemical Syntheses 234(14)
11.3.1 Overview 234(1)
11.3.2 Classical Polypyrrole Synthesis 235(3)
through Pyrrole Oxidation
11.3.3 Experimental Procedures 238(6)
References 244(4)
Chapter 12 Polyanilines 248(17)
Jacob Tarver
Yueh-Lin Loo
12.1 Introduction 248(2)
12.1.1 Synthesis Mechanism 250(1)
12.2 Experimental Procedures 250(15)
12.2.1 Chemical Polymerization of 251(5)
Anilines
12.2.2 Electrochemical Polymerization 256(1)
of Anilines
12.2.3 Template Polymerization of 257(3)
Anilines
12.2.4 Secondary Doping of Polyanilines 260(1)
12.2.5 Characterization and Remarks 261(1)
References 262(3)
Chapter 13 Si--Si Bond Polymers, Oligomers, 265(31)
Molecules, Surface, and Materials
Michiya Fujiki
13.1 Hierarchy of the Si--Si Bond Family: 265(1)
From Gaseous SiH4 to Crystal Silicon
13.2 Polymerization Techniques 266(4)
13.2.1 Wurtz-Type Condensation -- The 266(1)
Most Versatile Method
13.2.2 Electrochemical Reduction 267(1)
13.2.3 Ring-Opening Reactions with 267(1)
Precursors
13.2.4 Dehydrogenative Coupling with 268(1)
Organometallic Catalysts
13.2.5 Postpolymerization toward 268(1)
Functionalization
13.2.6 Chemical Modification of Si--H 268(1)
Bonds at the Surface of Crystal Silicon
13.2.7 Deintercalation from the Zintl 268(1)
Phase -- An Ideal Two-Dimensional Si
Skeleton
13.2.8 Thermolysis 269(1)
13.3 Features of Si--Si Bond Family 270(15)
Members
13.3.1 Chain-Like Polysilanes and 270(8)
Oligosilanes
13.3.2 Cyclic Four-Membered 278(1)
Oligosilanes and Ladder Oligosilanes
13.3.3 Network-Like Organopolysilanes 278(1)
(Organopolysilyne)
13.3.4 Chemical Modification of Ideal 279(1)
Two-Dimensional Si--Si Polymers with
CaSi2
13.3.5 Highly Strained Persila-Polyhedra 279(2)
13.3.6 Exotic Unsaturated Multiple 281(2)
Si--Si Bond Compounds
13.3.7 Surface Modification of Si--C 283(2)
Linkages from c-Si with Si--H Bond
13.4 Experimental Procedures 285(11)
13.4.1 Poly(diarylsilane)s 285(2)
13.4.2 Fluoroalkylpolysilane Homo- and 287(1)
Copolymers
13.4.3 Poly(alkylarylsilane) Homo- and 288(2)
Copolymers
13.4.4 Poly(alkylsilyne)s and Vacuum 290(1)
Pyrolysis
References 291(5)
Chapter 14 Alternating Polyheterocycles 296(23)
Kazuo Tanaka
Yoshiki Chujo
14.1 Introduction 296(9)
14.1.1 Alternating Polymers of Boron 297(4)
14.1.2 Alternating Polymers of Silicon 301(2)
14.1.3 Alternating Polymers of Germanium 303(1)
14.1.4 Alternating Polymers of 304(1)
Phosphorus
14.1.5 Alternating Polymers of 305(1)
Transition Metals
14.2 Experimental Procedures 305(14)
14.2.1 Materials and General 305(2)
Polymerization Procedures
14.2.2 Alternating Polymers of Boron 307(4)
14.2.3 Alternating Polymers of Silicon 311(1)
14.2.4 Alternating Polymers of Germanium 312(1)
14.2.5 Alternating Polymers of 313(1)
Phosphorus
14.2.6 Alternating Polymers of 314(2)
Transition Metals
References 316(3)
Chapter 15 Donor--Acceptor Alternating 319(24)
Copolymers
Wentao Li
Wei You
15.1 Introduction 319(3)
15.1.1 Inception of the Concept of D--A 320(1)
Alternating Copolymers
15.1.2 Advantages of D--A Alternating 320(2)
Copolymers and the State-of-the-Art
15.2 General Methods for D--A 322(6)
Copolymerization
15.2.1 Suzuki Reaction vs. Stille 322(1)
Reaction
15.2.2 Factors to Consider from the 323(1)
Perspective of Stille Polymerization
15.2.3 Factors to Consider from the 324(1)
Perspective of Suzuki Polymerization
15.2.4 Factors to Consider from the 325(2)
Perspective of Step Growth
15.2.5 New Development: Direct 327(1)
Arylation and Chain-Growth
Polymerization
15.3 Synthesis of Selected Monomers and 328(15)
Typical Polymerizations
15.3.1 Synthesis of Donor Monomers 328(2)
15.3.2 Synthesis of Acceptor Monomers 330(4)
15.3.3 Purification of Reagents 334(1)
15.3.4 Typical Procedure of 335(1)
Polymerization and Purification of
Product
15.3.5 Representative Syntheses of D--A 336(2)
Alternating Copolymers
15.3.6 Characterization and Remarks 338(1)
References 338(5)
Chapter 16 Conjugated Polyelectrolytes 343(16)
Anand Parthasarathy
Xuzhi Zhu
Kirk S. Schanze
16.1 Introduction 343(7)
16.1.1 A Brief History of Conjugated 344(1)
Polyelectrolytes
16.1.2 Synthesis of Conjugated 345(1)
Polyelectrolytes -- General
Considerations
16.1.3 Conjugated Polyelectrolyte 346(2)
Synthesis by the Direct Approach
16.1.4 Conjugated Polyelectrolyte 348(2)
Synthesis by the Precursor Method
16.2 Experimental Procedures 350(9)
16.2.1 Materials and General 350(1)
Considerations
16.2.2 Example Procedures 351(6)
References 357(2)
Chapter 17 Self-Doped Polymers 359(28)
M. Ramesh Kumar
Michael S. Freund
17.1 Introduction 359(4)
17.1.1 Self-Doped Conducting Polymers 359(2)
17.1.2 Types and Classes 361(1)
17.1.3 Doping Mechanisms and Properties 362(1)
17.2 Experimental Procedures 363(24)
17.2.1 Common Synthetic Mechanisms and 363(3)
Outcomes
17.2.2 Common Methods of 366(3)
Characterization
17.2.3 Polyanilines 369(6)
17.2.4 Polypyrroles 375(1)
17.2.5 Polythiophenes 376(3)
17.2.6 Polycarbazoles 379(1)
17.2.7 Poly(p-phenylene)s 379(1)
17.2.8 Poly(phenylenevinylene)s 380(1)
17.2.9 Polyindoles 381(1)
17.2.10 Polyacetylenes 382(1)
References 383(4)
Chapter 18 Fused Heterocycle Polymers 387(35)
Sandeep Kaur
Alexander L. Kanibolotsky
Peter J. Skabara
18.1 Introduction 387(13)
18.1.1 Dithiin-Based Polymers 389(2)
18.1.2 Tetrathiafulvalene (TTF)-Based 391(1)
Polymers
18.1.3 Diketopyrrolopyrrole (DPP)-and 392(3)
Thieno[3,4-c]pyrrole-4,6-dione
(TDP)-Based Polymers
18.1.4 395(2)
4,4-Difluoro-4-boro-3a-4a-diaza-s-indace
ne (BODIPY)- and Isoindigo (iI)-Based
Polymers
18.1.5 Azole- and Pyrazine-Based 397(3)
Polymers
18.2 Experimental Procedures 400(22)
18.2.1 Materials and General 400(1)
Polymerization Procedures
18.2.2 Dithiin-Based Polymers 401(2)
18.2.3 TTF-Based Polymers 403(3)
18.2.4 DPP- and TDP-Based Polymers 406(4)
18.2.5 BODIPY- and Isoindigo-Based 410(2)
Polymers
18.2.6 Azole- and Pyrazine-Based 412(6)
Polymers
18.2.7 Characterization and Remarks 418(1)
References 419(3)
Chapter 19 Direct Arylation/Heteroarylation 422(21)
Polycondensation Reactions
Lauren G. Mercier
Agnieszka Pron
Mario Leclerc
19.1 Introduction 422(1)
19.2 Reaction Conditions 423(7)
19.2.1 General Comments 423(1)
19.2.2 Heck (Jeffery) Conditions 424(1)
19.2.3 Carboxylic Acid Additives 425(2)
19.2.4 Without Carboxylic Acid Additives 427(3)
19.3 Mechanistic Investigations 430(3)
19.4 Experimental Procedures 433(6)
19.4.1 Materials and General 433(1)
Polymerization Procedures
19.4.2 Polymerization Using Heck 434(1)
(Jeffery) Conditions
19.4.3 Polymerization with Carboxylic 434(3)
Acid Additives
19.4.4 Polymerization without 437(2)
Carboxylic Acid Additives
19.5 Conclusions 439(4)
References 440(3)
Chapter 20 Chain-Growth Catalyst-Transfer 443(28)
Polycondensations
Anton Kiriy
Volodymyr Senkovskyy
20.1 Catalyst-Transfer Polycondensation: 443(9)
Mechanism, Scope and Limitations
20.1.1 Introduction 443(1)
20.1.2 Mechanism 444(2)
20.1.3 End-Functionalized Polymers and 446(1)
Brushes
20.1.4 Fully Conjugated Block Copolymers 447(2)
20.1.5 Chain-Growth Polymerization of 449(1)
Electron-Deficient Monomers
20.1.6 Chain-Growth Suzuki 449(2)
Polycondensation
20.1.7 Perspective 451(1)
20.2 Experimental Procedures 452(19)
20.2.1 Polythiophenes 452(1)
20.2.2 Polyfluorenes, Polycarbazoles, 453(2)
Polyphenylenes and Alternating
Copolymers
20.2.3 End-Functionalized Polymers, 455(4)
Stars and Brushes
20.2.4 Rod--Coil Block Copolymers 459(2)
20.2.5 All-Conjugated Block Copolymers 461(4)
20.2.6 Suzuki Polymerization 465(2)
References 467(4)
Subject Index 471