新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Basic Algebraic Topology
发布日期:2015-07-16  浏览

Basic Algebraic Topology

[BOOK DESCRIPTION]

Building on rudimentary knowledge of real analysis, point-set topology, and basic algebra, Basic Algebraic Topology provides plenty of material for a two-semester course in algebraic topology. The book first introduces the necessary fundamental concepts, such as relative homotopy, fibrations and cofibrations, category theory, cell complexes, and simplicial complexes. It then focuses on the fundamental group, covering spaces and elementary aspects of homology theory. It presents the central objects of study in topology visualization: manifolds. After developing the homology theory with coefficients, homology of the products, and cohomology algebra, the book returns to the study of manifolds, discussing Poincare duality and the De Rham theorem. A brief introduction to cohomology of sheaves and Cech cohomology follows. The core of the text covers higher homotopy groups, Hurewicz's isomorphism theorem, obstruction theory, Eilenberg-Mac Lane spaces, and Moore-Postnikov decomposition. The author then relates the homology of the total space of a fibration to that of the base and the fiber, with applications to characteristic classes and vector bundles. The book concludes with the basic theory of spectral sequences and several applications, including Serre's seminal work on higher homotopy groups. Thoroughly classroom-tested, this self-contained text takes students all the way to becoming algebraic topologists. Historical remarks throughout the text make the subject more meaningful to students. Also suitable for researchers, the book provides references for further reading, presents full proofs of all results, and includes numerous exercises of varying levels.

[TABLE OF CONTENTS]
Foreword                                           vii
Preface                                            ix
List of Symbols and Abbreviations                  xiii
Sectionwise Dependence Tree                        xv
1 Introduction                                     1   (62)
  1.1 The Basic Problem                            1   (11)
  1.2 Fundamental Group                            12  (10)
  1.3 Function Spaces and Quotient Spaces          22  (4)
  1.4 Relative Homotopy                            26  (3)
  1.5 Some Typical Constructions                   29  (7)
  1.6 Cofibrations                                 36  (5)
  1.7 Fibrations                                   41  (3)
  1.8 Categories and Functors                      44  (10)
  1.9 Miscellaneous Exercises to Chapter 1         54  (9)
2 Cell Complexes and Simplicial Complexes          63  (64)
  2.1 Basics of Convex Polytopes                   63  (19)
  2.2 Cell Complexes                               82  (7)
  2.3 Product of Cell Complexes                    89  (5)
  2.4 Homotopical Aspects                          94  (2)
  2.5 Cellular Maps                                96  (2)
  2.6 Abstract Simplicial Complexes                98  (2)
  2.7 Geometric Realization of Simplicial          100 (8)
  Complexes
  2.8 Barycentric Subdivision                      108 (5)
  2.9 Simplicial Approximation                     113 (8)
  2.10 Links and Stars                             121 (1)
  2.11 Miscellaneous Exercises to Chapter 2        122 (5)
3 Covering Spaces and Fundamental Group            127 (42)
  3.1 Basic Definitions                            127 (3)
  3.2 Lifting Properties                           130 (2)
  3.3 Relation with the Fundamental Group          132 (3)
  3.4 Classification of Covering Projections       135 (8)
  3.5 Group Action                                 143 (10)
  3.6 Pushouts and Free Products                   153 (4)
  3.7 Seifert-van Kampen Theorem                   157 (2)
  3.8 Applications                                 159 (6)
  3.9 Miscellaneous Exercises to Chapter 3         165 (4)
4 Homology Groups                                  169 (44)
  4.1 Basic Homological Algebra                    169 (8)
  4.2 Singular Homology Groups                     177 (10)
  4.3 Construction of Some Other Homology Groups   187 (11)
  4.4 Some Applications of Homology                198 (6)
  4.5 Relation between π1 and H1                204 (2)
  4.6 All Postponed Proofs                         206 (5)
  4.7 Miscellaneous Exercises to Chapter 4         211 (2)
5 Topology of Manifolds                            213 (40)
  5.1 Set Topological Aspects                      213 (8)
  5.2 Triangulation of Manifolds                   221 (8)
  5.3 Classification of Surfaces                   229 (11)
  5.4 Basics of Vector Bundles                     240 (11)
  5.5 Miscellaneous Exercises to Chapter 5         251 (2)
6 Universal Coefficient Theorem for Homology       253 (20)
  6.1 Method of Acyclic Models                     253 (4)
  6.2 Homology with Coefficients: The Tor          257 (6)
  Functor
  6.3 Kunneth Formula                              263 (8)
  6.4 Miscellaneous Exercises to Chapter 6         271 (2)
7 Cohomology                                       273 (30)
  7.1 Cochain Complexes                            273 (2)
  7.2 Universal Coefficient Theorem for            275 (6)
  Cohomology
  7.3 Products in Cohomology                       281 (4)
  7.4 Some Computations                            285 (7)
  7.5 Cohomology Operations; Steenrod Squares      292 (11)
8 Homology of Manifolds                            303 (26)
  8.1 Orientability                                303 (8)
  8.2 Duality Theorems                             311 (9)
  8.3 Some Applications                            320 (4)
  8.4 de Rham Cohomology                           324 (3)
  8.5 Miscellaneous Exercises to Chapter 8         327 (2)
9 Cohomology of Sheaves                            329 (28)
  9.1 Sheaves                                      329 (11)
  9.2 Injective Sheaves and Resolutions            340 (6)
  9.3 Cohomology of Sheaves                        346 (4)
  9.4 Cech Cohomology                              350 (6)
  9.5 Miscellaneous Exercises to Chapter 9         356 (1)
10 Homotopy Theory                                 357 (58)
  10.1 H-spaces and H'-spaces                      357 (5)
  10.2 Higher Homotopy Groups                      362 (8)
  10.3 Change of Base Point                        370 (5)
  10.4 The Hurewicz Isomorphism                    375 (9)
  10.5 Obstruction Theory                          384 (3)
  10.6 Homotopy Extension and Classification       387 (4)
  10.7 Eilenberg-Mac Lane Spaces                   391 (5)
  10.8 Moore-Postnikov Decomposition               396 (7)
  10.9 Computation with Lie Groups and Their       403 (8)
  Quotients
  10.10 Homology with Local Coefficients           411 (3)
  10.11 Miscellaneous Exercises to Chapter 10      414 (1)
11 Homology of Fibre Spaces                        415 (30)
  11.1 Generalities about Fibrations               415 (7)
  11.2 Thom Isomorphism Theorem                    422 (8)
  11.3 Fibrations over Suspensions                 430 (6)
  11.4 Cohomology of Classical Groups              436 (8)
  11.5 Miscellaneous Exercises to Chapter 11       444 (1)
12 Characteristic Classes                          445 (18)
  12.1 Orientation and Euler Class                 445 (7)
  12.2 Construction of Steifel-Whitney Classes     452 (2)
  and Chern Classes
  12.3 Fundamental Properties                      454 (3)
  12.4 Splitting Principle and Uniqueness          457 (1)
  12.5 Complex Bundles and Pontrjagin Classes      458 (3)
  12.6 Miscellaneous Exercises to Chapter 12       461 (2)
13 Spectral Sequences                              463 (38)
  13.1 Warm-up                                     463 (2)
  13.2 Exact Couples                               465 (5)
  13.3 Algebra of Spectral Sequences               470 (5)
  13.4 Leray-Serre Spectral Sequence               475 (5)
  13.5 Some Immediate Applications                 480 (4)
  13.6 Transgression                               484 (2)
  13.7 Cohomology Spectral Sequences               486 (5)
  13.8 Serre Classes                               491 (6)
  13.9 Homotopy Groups of Spheres                  497 (4)
Hints and Solutions                                501 (24)
Bibliography                                       525 (6)
Index                                              531

 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上