Advances in Biological Solid-State NMR: Proteins and Membrane-Active Peptides
[Book Description]
The complexity and heterogeneity of biological systems has posed an immense challenge in recent years. An increasingly important tool for obtaining molecular and atomic scale information on a range of large biological molecules and cellular components is solid-state NMR. This technique can address fascinating problems in structural biology, including the arrangement of supramolecular complexes and fibril formation in relation to molecular folding, misfolding and aggregation. Advances in Biological Solid-State NMR brings the reader up to date with chapters from international leaders of this growing field, covering the most recent developments in the methodology and applications of solid-state NMR to studies of membrane interactions and molecular motions. A much needed discussion of membrane systems is detailed alongside important developments in in situ analysis. Topics include applications to biological membranes, membrane active peptides, membrane proteins, protein assemblies and in-cell NMR. This exposition of an invaluable technique will interest those working in a range of related spectroscopic and biological fields.A basic introduction invites those interested to familiarise themselves with the basic mathematical and conceptual foundations of solid-state NMR. A thorough and comprehensive discussion of this promising technique follows, which is essential reading for those working or studying at postgraduate level in this exciting field.
[Table of Content]
Chapter 1 Introduction to Biological 1 (17)
Solid-State NMR
M. Weingarth
M. Baldus
1.1 Preface 1 (1)
1.2 Interactions in Biological Solid-State 2 (7)
NMR
1.2.1 General and Rotational Properties 2 (2)
of NMR Interactions
1.2.2 Chemical Shift Anisotropy 4 (1)
1.2.3 Dipolar Coupling 5 (1)
1.2.4 Scalar Coupling 6 (1)
1.2.5 Quadrupolar Coupling 7 (1)
1.2.6 Magic Angle Spinning 7 (2)
1.3 Cross Polarization 9 (1)
1.4 Dipolar Decoupling 10 (1)
1.5 Recoupling 11 (4)
1.5.1 Protein Backbone Assignment 11 (2)
1.5.2 Protein Geometry Restraints 13 (1)
1.5.3 Intermolecular Geometry Restraints 14 (1)
1.5.4 Protein Dynamics 15 (1)
References 15 (3)
Chapter 2 Combining NMR Spectroscopic 18 (18)
Measurements and Molecular Dynamics Simulations
to Determine the Orientation of Amphipathic
Peptides in Lipid-Bilayers
B. Scott Perrin Jr
Richard W. Pastor
Myriam Cotten
2.1 Introduction 18 (3)
2.2 Orientation of an α-Helix from 21 (3)
ケH-15N Dipolar Couplings and 15N Chemical
Shifts
2.3 Crosschecking 1H-15N Dipolar Coupling 24 (1)
Assignments of Multiply Labeled Peptides
2.4 Inaccurate Orientations from Dipolar 25 (4)
and Chemical Shift Waves
2.4.1 Single-Solution Example: 26 (1)
Orientation of Piscidin 1 in PC/PG
2.4.2 Multiple-Solution Example: 27 (1)
Orientation of Piscidin 3 in PE/PG
2.4.3 Resolving the Accurate Orientation 28 (1)
with MD or Structural Refinement
2.4.4 Change to the Static Internuclear 28 (1)
Dipolar Coupling and Anisotropic Order
Parameter due to Peptide Dynamics
2.5 Error in Measured Orientation due to 29 (2)
Large Fluctuations in τ
2.6 Characterizing Atomistic Details not 31 (1)
Directly Measurable by Solid-State NMR
2.7 Summary and Perspective 31 (2)
References 33 (3)
Chapter 3 ケウC-ケウC Distance Measurements by 36 (17)
Polarization Transfer Matrix Analysis of ケウC
Spin Diffusion in a Uniformly ケウC-Labeled
Molecular Complex under Magic Angle Spinning
Ayako Egawa
Hideo Akutsu
Toshimichi Fujiwara
3.1 Introduction 36 (1)
3.2 Theory 37 (2)
3.3 Results 39 (7)
3.3.1 Build-up Curve Analysis by the Rate 39 (3)
Matrix R
3.3.2 Polarization Transfer Rates Rij 42 (1)
3.3.3 Calculation of Distances from 43 (3)
Polarization Transfer Rates
3.4 Discussion 46 (5)
3.4.1 Factors Affecting Distance Precision 46 (2)
3.4.2 Spin Diffusion in the Molecular 48 (2)
Complex
3.4.3 Efficiency of Polarization Transfer 50 (1)
Acknowledgments 51 (1)
References 51 (2)
Chapter 4 Demonstration of the Equivalence of 53 (18)
Solid-State NMR Orientational Constraints from
Magnetic and Rotational Alignment of the Coat
Protein in a Filamentous Bacteriophage
Stanley J. Opella
Bibhuti B. Das
4.1 Introduction 53 (2)
4.2 Results 55 (8)
4.2.1 ケウC NMR Experiments 56 (3)
4.2.2 15N NMR Experiments 59 (4)
4.3 Experimental Methods 63 (3)
4.3.1 Sample Preparation 63 (1)
4.3.2 NMR Experiments 64 (2)
4.4 Discussion 66 (3)
Acknowledgments 69 (1)
References 69 (2)
Chapter 5 Membrane Protein Interactions 71 (27)
James A. Jarvis
Philip T.F. Williamson
5.1 Introduction 71 (1)
5.2 Solid-State NMR Methods Used for the 72 (3)
Study of Membrane Protein Interactions
5.2.1 Solid-State NMR 72 (2)
5.2.2 Magic-Angle Spinning NMR 74 (1)
5.2.3 Oriented Sample NMR 74 (1)
5.3 Studying Molecular Interactions by 75 (16)
Solid-State NMR
5.3.1 Interactions with Soluble Ligands 75 (8)
5.3.2 Interactions at the Lipid/Protein 83 (4)
Interface
5.3.3 Protein/Protein Interactions 87 (4)
5.4 Conclusion 91 (1)
Acknowledgements 92 (1)
References 92 (6)
Chapter 6 Magnetic Liposomes and Bicelles: New 98 (15)
Tools for Membrane-Peptide Structural Studies
Erick J. Dufourc
Nicole Harmouche
C馗ile Loudet-Courr鑒es
Reiko Oda
Anna Diller
Benoit Odaert
Axelle Gr駘ard
S饕astien Buchoux
6.1 Introduction 98 (2)
6.2 Magnetic Properties of Lipids and Lipid 100(4)
Assemblies; Magnetic Orientation
6.2.1 Magnetic Properties of Molecules 100(1)
6.2.2 Orientation of Lipid Assemblies in 101(1)
Magnetic Fields: Liposomes
6.2.3 Orientation of Lipid Assemblies in 101(3)
Magnetic Fields: Bicelles
6.3 Structures, Topologies in Magnetically 104(5)
Aligned Membranes
6.3.1 Membrane Proteins 104(2)
6.3.2 Peptides 106(3)
6.4 Conclusion 109(1)
Abbreviations 110(1)
Acknowledgements 110(1)
References 111(2)
Chapter 7 Membranes and Their Lipids: A 113(20)
Molecular Insight into Their Organization and
Function
Martin Lidman
Marcus Wallgren
Gerhard Gr?bner
7.1 Introduction: Lipid Membranes in Life 113(2)
7.2 Solid-State NMR: Insight into the 115(6)
Organization of Lipid Bilayers
7.2.1 General 115(2)
7.2.2 Exploiting Natural Abundance Nuclei 117(2)
in Lipids by MAS NMR
7.2.3 Tracking Lipids ex vivo/in vivo in 119(2)
Complex Systems by ウケP and ケH MAS NMR
7.3 The Role of Oxidized Phospholipids in 121(7)
Membrane Function: Regulation of
Mitochondria-Mediated Apoptosis
Acknowledgements 128(1)
References 128(5)
Chapter 8 Structural Studies of Small Bioactive 133(29)
Compounds Interacting with Membranes and
Proteins
Shigeru Matsuoka
Michio Murata
8.1 Introduction 133(1)
8.2 Detection of Molecular Interactions of 134(11)
Small Compounds in Biological Solids
8.2.1 Isotropic Chemical Shift of 135(3)
Membrane Lipids and Small Compounds
8.2.2 Intramolecular Anisotropic 138(3)
Interactions of Membrane Lipids and Small
Compounds
8.2.3 Intermolecular Dipolar Coupling of 141(4)
Small Compounds
8.3 Examples of Applications to Lipid 145(7)
Membranes
8.3.1 Amphotericin B 146(1)
8.3.2 Catechin 147(3)
8.3.3 Curcumin 150(2)
8.4 Examples of Applications to Protein 152(4)
Aggregates and Polymers
8.4.1 Curcumin 152(1)
8.4.2 Thioflavin T 153(1)
8.4.3 Paclitaxel Binding to Microtubules 154(2)
8.5 Conclusion 156(1)
References 156(6)
Chapter 9 Lipopolysaccharide Induces Raft 162(18)
Domain Expansion in a Cholesterol-Containing
Membrane
Kaoru Nomura
Shoichi Kusumoto
9.1 Introduction 162(3)
9.2 Experimental 165(2)
9.2.1 Materials 165(1)
9.2.2 Sample Preparation 166(1)
9.2.3 Solid-State NMR Spectroscopy 166(1)
9.3 Results and Discussion 167(9)
9.3.1 ReLPS Membrane Interactions 167(2)
9.3.2 Concentration Dependence of 169(1)
ReLPS-DEPE Lipid Bilayer Interaction
9.3.3 ケウC NMR Spectra of Uniformly 170(2)
ケウC-Labeled ReLPS in Membranes
9.3.4 Characterization of DEPE/SM/Chol 172(2)
Membranes
9.3.5 Dynamics of ReLPS and DEPE 174(2)
Phospholipid in Different Membranes
9.4 Conclusions 176(1)
Acknowledgements 177(1)
References 177(3)
Chapter 10 Deuterium NMR of Mixed Lipid 180(20)
Membranes
Sherry S.W. Leung
Jenifer Thewalt
10.1 Introduction 180(2)
10.2 Simple Mixed Lipid Membranes: Binary 182(7)
Systems
10.2.1 Order Parameters of Lipids in 185(4)
Two-Component Membranes
10.3 Membranes with Three Lipid Components 189(6)
10.3.1 Comparisons between イH NMR and 192(3)
Fluorescence Microscopy Investigations of
Ternary Membranes
10.4 イH NMR Studies of Model Skin Barrier 195(1)
Membranes
10.5 Conclusion 196(1)
Acknowledgements 196(1)
References 196(4)
Chapter 11 Membrane Interactions of Amphiphilic 200(14)
Peptides with Antimicrobial Potential: A
Solid-State NMR Study
Matthieu Fillion
Normand Voyer
Mich鑞e Auger
11.1 Introduction 200(2)
11.1.1 Bacterial Resistance to Antibiotics 200(1)
11.1.2 Natural Antimicrobial Peptides 201(1)
11.1.3 Membrane Selectivity 201(1)
11.1.4 Mechanisms of Action 202(1)
11.2 Synthetic Peptides 202(2)
11.2.1 Introduction 202(1)
11.2.2 Base 14-mer Peptide 202(1)
11.2.3 Charged Analogues 203(1)
11.2.4 Goals of the Study 204(1)
11.3 Interactions of the Base 14-mer 204(3)
Peptide with Membranes
11.3.1 Effect on Lipid Orientation 204(1)
11.3.2 Effect on Lipid Acyl Chain Order 205(1)
11.3.3 Orientation of the Peptide in 206(1)
Membranes
11.3.4 Mechanism of Membrane Perturbation 207(1)
11.4 Interactions of Cationic 14-mer 207(4)
Peptides with Membranes
11.4.1 Interactions with Lipid Vesicles 207(2)
11.4.2 Interactions with Mechanically 209(2)
Oriented Bilayers
11.5 Conclusions 211(1)
Acknowledgements 212(1)
References 212(2)
Chapter 12 Investigations of the Structure, 214(21)
Topology and Dynamics of Membrane-Associated
Polypeptides by Solid-State NMR Spectroscopy
Evgeniy S. Salnikov
Christopher Aisenbrey
Jesus Raya
Burkhard Bechinger
12.1 Introduction 214(1)
12.2 Oriented Solid-State NMR 215(1)
12.3 Orientational Restraints from 216(4)
Solid-State NMR Parameters
12.4 Supported Lipid Bilayers 220(3)
12.5 Magnetic Alignment of Bicelles 223(1)
12.6 Error Analysis and Sample Mosaicity 224(5)
12.7 Conclusions 229(1)
References 229(6)
Chapter 13 NMR of Lipids and Lipid/Peptide 235(32)
Mixtures
James H. Davis
Miranda L. Schmidt
Ivana Komljenovic
13.1 Introduction to Lipids and Membranes 235(3)
13.1.1 Membrane Lipids 235(1)
13.1.2 The Structure of Membranes 235(1)
13.1.3 Thermodynamic Phases Formed in the 236(1)
Presence of Water
13.1.4 The Dynamics of Lipids and 237(1)
Peptides in Membranes
13.2 Introduction to NMR 238(5)
13.2.1 The Visible Nuclei 238(1)
13.2.2 Oriented vs. Powder Samples in 239(4)
Solid-State NMR
13.3 Phase Equilibria of Lipids and 243(7)
Lipid/Peptide Mixtures
13.3.1 Lipid/Water Mixtures 243(1)
13.3.2 Binary Lipid Mixtures 244(1)
13.3.3 The Effect of Sterols 245(1)
13.3.4 Ternary Lipid/Sterol Mixtures 246(2)
13.3.5 Lipid/Peptide or Lipid/Protein 248(2)
Mixtures
13.4 NMR of Oriented Samples 250(5)
13.4.1 Orientation between Glass Plates 251(1)
13.4.2 Bicelles 251(3)
13.4.3 Nanopores 254(1)
13.5 Lipid/Peptide Orientational Order and 255(9)
Dynamics
Acknowledgements 264(1)
References 264(3)
Chapter 14 NMR Investigations of the Structure 267(20)
and Dynamics of Antimicrobial Peptides: The
Peptaibol Alamethicin
Thomas Vosegaard
Niels Chr. Nielsen
14.1 Introduction 267(2)
14.2 Peptide Structure and Conformation 269(3)
14.3 Membrane Insertion and Peptide-Induced 272(6)
Membrane Mosaic Spread
14.4 Membrane Systems and their Influence 278(3)
on Peptide Structure
14.5 Peptide Dynamics in Oriented Lipid 281(1)
Bilayers
14.6 Altering Function: Peptide 282(2)
Nanochannels by Scaffolding
14.7 Conclusion 284(1)
References 284(3)
Chapter 15 Solid-State NMR Studies of 287(17)
Antimicrobial Peptide Interactions with
Specific Lipid Environments
Marc-Antoine Sani
Frances Separovic
15.1 Introduction 287(1)
15.2 NMR Interactions and Motional 288(3)
Timescales Relevant to Lipid Membranes
15.2.1 Chemical Shift Anisotropy 288(1)
15.2.2 Dipole-Dipole Interactions 289(1)
15.2.3 Quadrupolar Interactions (for Spin 289(1)
I > 1/2)
15.2.4 Magic Angle Spinning Techniques 290(1)
15.2.5 The Timescale of Lipid Molecular 290(1)
Motions in Bilayer Structures
15.3 Lipid Membrane Systems Relevant for 291(4)
NMR Studies of AMPs
15.3.1 Liposomes 291(3)
15.3.2 Mechanically and Magnetically 294(1)
Oriented Bilayers
15.4 Perturbation of Phospholipid Membranes 295(6)
by Frog AMPs
15.4.1 The Effect of Lipid Composition on 295(1)
AMP Activity
15.4.2 The Effect of Lipid Phase on AMP 296(1)
Activity
15.4.3 Tackling the Complexity of Lipid 297(1)
Mixtures
15.4.4 NMR Studies of Maculatin with 298(3)
Lipid Bicelles
15.5 Conclusions and Perspectives 301(1)
Acknowledgments 301(1)
References 301(3)
Chapter 16 Dynamic Structure Analysis of 304(16)
Peptides in Membranes by Solid-State NMR
Erik Strandberg
Anne S. Ulrich
16.1 Introduction 304(1)
16.2 Determination of Peptide Orientation 305(3)
16.2.1 Solid-State NMR Constraints 305(2)
16.2.2 Peptide Structure 307(1)
16.2.3 Definition of Orientational Angles 307(1)
16.2.4 Calculation of Peptide Orientation 308(1)
16.3 Peptide Dynamics 308(6)
16.3.1 Smol (Order Parameter) Model 309(1)
16.3.2 Distribution of Angles Model 309(5)
16.4 Complementary 15N NMR Studies 314(1)
16.5 Conclusions 315(1)
Acknowledgments 315(1)
References 315(5)
Chapter 17 Structural Dynamics of Retinal in 320(33)
Rhodopsin Activation Viewed by Solid-State イH
NMR Spectroscopy
Michael F. Brown
Andrey V. Struts
17.1 Introduction 320(1)
17.2 Order Parameters and Bond Orientations 321(6)
for Membrane Proteins are Determined from
Solid-State イH NMR Spectroscopy
17.3 Deuterium NMR Spectral Lineshapes 327(8)
Reveal Changes in Structure of Retinal Due
to Light Activation of Rhodopsin
17.4 Retinal Dynamics within the Binding 335(9)
Cavity of Rhodopsin are Investigated by
Solid-State イH NMR Relaxation Methods
17.5 Solid-State イH NMR Spectroscopy 344(2)
Illuminates the Activation Mechanism of
Rhodopsin in a Membrane Environment
17.6 Conclusions 346(1)
Acknowledgments 346(1)
References 346(7)
Chapter 18 Helical Membrane Protein Structure: 353(18)
Strategy for Success
Nabanita Das
Dylan T. Murray
Yimin Miao
Timothy A. Cross
18.1 Introduction 353(1)
18.2 Defining the Lipid Bilayer Environment 354(4)
for Native Structures
18.2.1 Membrane Environment 354(1)
18.2.2 Synthetic Lipid/Membrane Protein 355(2)
Samples
18.2.3 Cellular Membranes 357(1)
18.3 Defining a "Good" Structure 358(7)
18.3.1 From a Structural Perspective 360(1)
18.3.2 From a Restraint Perspective 361(2)
18.3.3 Restraints per Residue 363(2)
18.4 Combining Absolute and Relative 365(2)
-Restraints
18.4.1 Labeling ケウC and 15N Sites 366(1)
18.4.2 Selective Labeling 366(1)
18.5 Computational Refinement of Membrane 367(1)
Protein Structure
18.6 Conclusions 368(1)
Acknowledgements 368(1)
References 368(3)
Chapter 19 Chemistry and Structure via 371(16)
Solid-State NMR
Judith Herzfeld
19.1 Introduction 371(1)
19.2 Chemistry: Enforcing Vectoriality in 372(8)
the Ion-motive Photocycle of
Bacteriorhodopsin
19.3 Structure: Building Buoyancy in 380(4)
Aquatic Microorganisms
19.4 Summary 384(1)
References 385(2)
Chapter 20 Photoactivated Structural Changes in 387(18)
Photoreceptor Membrane Proteins as Revealed by
in situ Photoirradiation Solid-State NMR
Spectroscopy
Akira Naito
Izuru Kawamura
20.1 Introduction 387(3)
20.1.1 Photoirradiation Solid-State NMR 387(1)
Spectroscopy
20.1.2 Photoreaction Cycle of Pharaonis 388(2)
Phoborhodopsin
20.1.3 Photoreaction Cycle of Sensory 390(1)
Rhodopsin I
20.2 Experimental 390(3)
20.2.1 Materials 390(1)
20.2.2 Photoirradiation System for 391(1)
Solid-State NMR
20.2.3 NMR Measurements 391(1)
20.2.4 Trapping of Photointermediates 392(1)
Using in situ Photoirradiation
Solid-State NMR
20.3 In situ Photoirradiated Solid-State 393(4)
NMR Study of ppR and the ppR/pHtrII Complex
20.3.1 An Active Intermediate of the ppR 393(1)
Photoreceptor Dissolved in OG
20.3.2 Photocycle of ppR 394(1)
20.3.3 Photocycle of the ppR/pHtrII 395(1)
Complex
20.3.4 Trapping of the N-Intermediate of 396(1)
ppR
20.4 In situ Photoirradiation Solid-State 397(4)
NMR Study of SrSRI
20.4.1 Photocycle of SrSRI 397(3)
20.4.2 Mechanism of the Photocycle of 400(1)
SrSRI
20.5 Conclusion 401(1)
Acknowledgements 402(1)
References 402(3)
Chapter 21 A Promising Prognosis for 405(20)
Solid-State NMR of Functional Membrane Protein
Complexes
Michael J. Harris
Lynmarie K. Thompson
21.1 Advances in Methodology 405(10)
21.1.1 Structure Determination of 406(1)
Proteins by Solid-State NMR Spectroscopy
21.1.2 Expanding the Toolkit for Large 407(4)
Functional Biomolecules
21.1.3 Sensitivity Enhancement: A 411(3)
Critical Advance for More Complex Systems
21.1.4 Complementary Approaches Enable 414(1)
Structural Studies
21.2 Functional Membrane Protein Complexes 415(4)
21.2.1 Disulfide Bond Generating Complex, 415(2)
DsbA/DsbB
21.2.2 Complexes of the Calcium Pump SERCA 417(1)
21.2.3 Signaling Complexes of Chemotaxis 417(2)
Receptors
21.3 Outlook 419(1)
Acknowledgments 420(1)
References 420(5)
Chapter 22 Structural Topologies of 425(19)
Phosphorylated and Non-phosphorylated
Oligomeric Phospholamban in Lipid Membranes by
a Hybrid NMR Approach
Vitaly Vostrikov
Gianluigi Veglia
22.1 Introduction 425(3)
22.2 Hybrid NMR Approach 428(1)
22.3 Structural Topology of PLN 429(4)
22.3.1 Secondary Structure in Micelles 429(2)
and Lipid Membranes
22.3.2 Inter-Protomer Distances in 431(1)
Micelles and Lipid Membranes
22.3.3 Orientation of PLN in Lipid 431(1)
Bilayers
22.3.4 Structure Calculation Protocol 432(1)
22.4 Structural Topology of 433(4)
Non-phosphorylated and Phosphorylated
Pentamers
22.5 Conformatibnal Dynamics of 437(1)
Phosphorylated and Non-phosphorylated PLN
22.6 Functional Implication of PLN 438(1)
Oligomerization
22.7 Concluding Remarks 439(1)
Acknowledgements 439(1)
References 440(4)
Chapter 23 Structural Insights from Solid-State 444(15)
NMR into the Function of the Bacteriorhodopsin
Photoreceptor Protein
Peter J. Judge
Garrick F. Taylor
Louic S. Vermeer
Anthony Watts
23.1 Introduction 444(2)
23.2 Determination of the Retinal 446(2)
Chromophore Structure by MAS ssNMR
23.3 Determination of Protein Structure by 448(1)
MAS NMR
23.4 Determination of Chromophore Structure 449(2)
by Oriented Sample NMR
23.5 Reorientation of Retinal in the M 451(1)
Intermediates of bR and Rhodopsin
23.6 Determination of Protein structure by 452(2)
OS NMR
23.7 Magic Angle Oriented Sample Spinning 454(1)
NMR of bR
23.8 Functional Insights from ssNMR into 455(1)
the bR Photocycle
23.9 Conclusion 455(1)
Acknowledgements 456(1)
References 456(3)
Chapter 24 イH Solid-State NMR Study of 459(17)
Peptide-Membrane Interactions in Intact Bacteria
Isabelle Marcotte
Valerie Booth
24.1 Introduction 459(3)
24.2 Production and Characterization of 462(5)
Deuterated E. coli
24.2.1 Deuteration of Phospholipid Acyl 462(1)
Chains in Mutants
24.2.2 Deuteration of Phospholipid Acyl 463(1)
Chains in Non-mutated Bacteria
24.2.3 Cell Viability and Isotopic 464(2)
Labeling Measurement
24.2.4 イH NMR Characterization of Bacteria 466(1)
24.3 Membrane Interaction of Antibiotics 467(5)
with Deuterated E. coli
24.3.1 Effect of Antimicrobial Peptides 467(2)
24.3.2 Effect of Other Natural 469(3)
Antimicrobial Agents
24.4 Conclusion and Future Prospects 472(1)
References 473(3)
Chapter 25 Magic Angle Spinning NMR 476(25)
Spectroscopy for Resolving Structure and
Mechanisms of Function of Membrane Protein
Assemblies Involved in Photosynthetic Energy
Conversion
Yuliya Miloslavina
Huub J.M. de Groot
25.1 Introduction 476(1)
25.2 Methods for Biological Solid-State NMR 477(8)
of Photosynthetic Assemblies
25.2.1 Magic Angle Spinning NMR 477(2)
25.2.2 Homonuclear Correlation 479(4)
Spectroscopy
25.2.3 Photo-CIDNP MAS NMR 483(2)
25.3 Biological Solid-State NMR of 485(10)
Photosynthetic Energy Conversion Systems
25.3.1 Non-Photochemical Quenching in 485(3)
Light-Harvesting Antenna
25.3.2 BCh1 a Containing CsmA Protein 488(2)
from the Chlorosomal Baseplate
25.3.3 The Mechanism of Charge Separation 490(5)
in Bacterial Reaction Centres
25.4 Conclusions 495(1)
References 496(5)
Chapter 26 Large Protein Complexes Revealed by 501(32)
Solution-State NMR: G Proteins and G
Protein-Activated Inwardly Rectifying Potassium
Ion Channel
Masanori Osawa
Yoko Mase
Mariko Yokogawa
Koh Takeuchi
Ichio Shimada
26.1 Solution-State NMR Techniques for 501(4)
Larger Proteins
26.1.1 Detection of NMR Signals: TROSY 501(2)
26.1.2 NMR Analyses of Protein-Protein 503(2)
Interactions
26.2 G Protein-Activated Inwardly 505(3)
Rectifying Potassium Ion Channel
26.2.1 GIRK as an Effector of G Proteins 505(1)
26.2.2 Gβγ Binding Site on 506(1)
GIRK, Proposed by Mutational Analyses
26.2.3 Regulation of the GIRK Properties 506(2)
by Gαi/o
26.2.4 Strategies to Investigate the GIRK 508(1)
Regulation Mechanism by G Proteins
26.3 Gβγ Binding and 508(10)
Conformational Rearrangements of GIRK1
26.3.1 Binding Affinity of the CP Region 508(3)
of GIRK for Gβγ
26.3.2 Gβγ Binding Site on 511(2)
GIRKcp, Revealed by TCS Experiments
26.3.3 Chemical Shift Perturbation of 513(1)
GIRKcp, upon Binding to Gβγ
26.3.4 Possible Binding Mode between GIRK 513(3)
and Gβγ
26.3.5 Propagation of the 516(2)
Gβγ-Induced Rearrangements of
GIRKcp to the K+- Ion Gate
26.4 Structural Basis for the Modulation of 518(7)
the Gating Property of GIRK by Gαi/o
26.4.1 Binding Affinity between 518(2)
Gαi3 and GIRKcp Evaluated by NMR
Spectral Change
26.4.2 GIRKom, Binding Site on Gαi3 520(1)
Revealed by TCS Experiments
26.4.3 Gαi3 Binding Site on GIRKcp 520(2)
Revealed by TCS Experiments
26.4.4 Contribution of the Helical Domain 522(1)
of Gαi3 to the Interaction with
GIRKcp as Investigated by PRE Experiments
26.4.5 Binding Mode of Gα and the 523(2)
Cytoplasmic Region of GIRK
26.5 GIRK Regulation Mechanism by G Proteins 525(2)
Acknowledgements 527(1)
References 527(6)
Chapter 27 NMR Studies of Small Molecules 533(23)
Interacting with Amyloidogenic Proteins
Elke Prade
Juan-Miguel Lopez del Amo
Bernd Reif
27.1 Introduction 533(1)
27.2 Amyloid Dyes 534(5)
27.2.1 Thioflavin T 536(1)
27.2.2 Congo Red 537(2)
27.3 Peptide Inhibitors 539(2)
27.4 Polyphenolic Inhibitors 541(3)
27.5 Lacmoid 544(1)
27.6 Bifunctional Metal-Chelating Compounds 545(1)
27.7 Antibody Inhibitors 545(3)
Acknowledgements 548(1)
References 548(8)
Chapter 28 Solid-State NMR Studies of 556(21)
β-Amyloid Fibrils and Related Assemblies
Wei Qiang
Robert Tycko
28.1 Introduction 556(2)
28.2 Fibrils Formed by β-Amyloid 558(2)
Fragments
28.3 Full-Length, Wild-Type β-Amyloid 560(4)
Fibrils
28.4 Fibrils Formed by Disease-Associated 564(3)
Mutants
28.5 β-Amyloid Oligomers and 567(2)
Protofibrils
28.6 Interactions with Membranes and 569(2)
Inhibitors
28.7 Concluding Remarks 571(1)
Acknowledgements 572(1)
References 572(5)
Subject Index 577