新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Reaction Rate Constant Computations: Theories and Applications
发布日期:2015-07-16  浏览

Reaction Rate Constant Computations: Theories and Applications

[Book Description]

The reaction rate constant plays an essential role a wide range of processes in biology, chemistry and physics. Calculating the reaction rate constant provides considerable understanding to a reaction and this book presents the latest thinking in modern rate computational theory. The editors have more than 30 years' experience in researching the theoretical computation of chemical reaction rate constants by global dynamics and transition state theories and have brought together a global pool of expertise discussing these in a variety of contexts and across all phases. This thorough treatment of the subject provides an essential handbook to students and researchers entering the field and a comprehensive reference to established practitioners across the sciences, providing better tools to determining reaction rate constants.

[Table of Content]
Chapter 1 Elementary Reactions: Rate Constants     1  (33)
and their Temperature-Dependence
Ian W. M. Smith
1.1 Introduction 1 (2)
1.2 A Little History 3 (2)
1.3 Potential Energy Surfaces and 5 (8)
Transition State Theory
1.4 Comparisons between Experimental and 13 (16)
Theoretical Results for Selected Reactions
1.4.1 Dissociation and Association 13 (8)
Reactions
1.4.2 Bimolecular Reactions 21 (6)
1.4.3 Reactions between Radicals and 27 (2)
Unsaturated Molecules
1.5 Concluding Remarks 29 (1)
Acknowledgements 30 (1)
References 30 (4)
Chapter 2 Rate Constant Calculation of 34 (21)
Benzylperoxy Radical Isomerization
S. Canneaux
C. Hammaecher
F. Louis
M. Ribaucour
2.1 Introduction 34 (4)
2.2 Computational Methods 38 (2)
2.3 Results and Discussion 40 (9)
2.3.1 Geometric Parameters 40 (3)
2.3.2 Energetics 43 (5)
2.3.3 Kinetic Parameter Calculations 48 (1)
2.4 Conclusions 49 (1)
Acknowledgements 49 (1)
References 50 (5)
Chapter 3 Rate Constants and the Kinetic 55 (22)
Isotope Effects in Multi-Proton Transfer
Reactions: A Case Study of ClONO2 + HCl->HNO3 +
Cl2 Reactions with Water Clusters with
Canonical Variational Transition State Theory
using a Direct Ab Initio Dynamics Approach
Yongho Kim
3.1 Introduction 55 (3)
3.2 Computational Methods 58 (1)
3.3 Results and Discussion 59 (13)
3.3.1 Electronic Structures at the 59 (3)
Stationary Points
3.3.2 Reaction Dynamics of Multi-Proton 62 (4)
Transfers
3.3.3 Rate Constants, Tunneling and 66 (2)
Kinetic Isotope Effects
3.3.4 Breakdown of the Rule of Geometric 68 (4)
Mean
3.4 Conclusions 72 (1)
Acknowledgements 73 (1)
References 73 (4)
Chapter 4 Statisticodynamical and Multiscale 77 (22)
Modeling of Cluster Dissociation
F. Calvo
P. Parneix
4.1 Introduction 77 (3)
4.1.1 Cluster Physics and Chemistry 77 (1)
4.1.2 Dissociation as a Multiscale Process 78 (2)
4.2 Time Multiscale Modeling 80 (6)
4.2.1 Basic Principles 80 (1)
4.2.2 Connecting Atomistic Dynamics with 81 (5)
Rate Theories
4.3 Validating and Exploiting Rate Theories 86 (4)
4.3.1 Probability Distributions 86 (1)
4.3.2 An Integrated Kinetic Modeling of 87 (3)
Sequential Dissociation
4.4 Applications 90 (5)
4.4.1 Dissociation Induced by Electron 90 (1)
Impact: Cationic Argon Clusters
4.4.2 Thermalization along the 91 (2)
Dissociative Chain and the Decay of
Fullerenes
4.4.3 Laser-Induced Spectroscopy of a 93 (2)
Messenger-Tagged Ionic Cluster
4.5 Conclusions 95 (1)
References 96 (3)
Chapter 5 A Mixed Quantum-Classical View to the 99 (34)
Kinetics of Chemical Reactions Involving
Multiple Electronic States
Aurelien de la Lande
Bernard L騅y
Isabelle Demachy
5.1 Introduction 99 (2)
5.2 A Mixed Quantum-Classical Framework for 101(9)
Multiple PES Reactions
5.2.1 Time Evolution of a Molecular 101(2)
System using a Time-Dependent Schr?dinger
Equation
5.2.2 Simplification of the 103(4)
Nuclear-Electronic Dynamics Problem
5.2.3 Mixed Quantum-Classical Kinetics 107(3)
Theory
5.3 Atomistically Resolved Decoherence in 110(18)
Molecular Systems
5.3.1 Modeling Decoherence from 111(4)
Semi-Classical Molecular Dynamics
Simulations
5.3.2 Activation of Dioxygen by Cuprous 115(6)
Complexes
5.3.3 Decoherence and Long-Range Electron 121(7)
Transfers
5.4 Conclusions 128(2)
References 130(3)
Chapter 6 Adiabatic Treatment of Torsional 133(21)
Anharmonicity and Mode Coupling in Molecular
Partition Functions and Statistical Rate
Coefficients: Application to Hydrogen Peroxide
Zeb C. Kramer
Rex T. Skodje
6.1 Introduction 133(3)
6.2 Adiabatic Theory of Molecular State 136(4)
Density for Non-Separable Large Amplitude
Motion: Bound Motion
6.3 Adiabatic Theory for Reactive Systems 140(2)
6.4 Results for HOOH and HOOD 142(9)
6.5 Conclusions 151(1)
Acknowledgements 152(1)
References 152(2)
Chapter 7 Dynamics of Chemical Reaction around 154(26)
a Saddle Point: What Divides Reacting and
Non-Reacting Trajectories?
Shinnosuke Kawai
Tamiki Komatsuzaki
7.1 Introduction 154(3)
7.2 Phase Space Picture of Chemical 157(5)
Reaction Systems in the Saddle Region
7.2.1 Quadratic Approximation 157(2)
7.2.2 Effect of Anharmonicities 159(3)
7.3 Canceling the Effect of Coupling: 162(7)
Normal Form Theory
7.3.1 Lie Transformation 162(3)
7.3.2 Hierarchy of Reaction Dynamics 165(4)
7.4 Calculation of Reaction Probabilities 169(6)
7.4.1 Semi-Classical Reaction Rate Formula 169(4)
7.4.2 Instanton Trajectories 173(2)
7.5 Conclusions 175(1)
References 176(4)
Chapter 8 Derivation of Rate Constants from 180(33)
Accurate Quantum Wave Packet Theory for
Nonadiabatic and Adiabatic Chemical Reactions
Tianshu Chu
Keli Han
8.1 Introduction 180(3)
8.2 Accurate Nonadiabatic Quantum Dynamics 183(16)
Methods
8.2.1 Nonadiabatic State-to-State Real 183(7)
Wave Packet Theory for Tri-Atomic
Reaction of A+BC->AB+C
8.2.2 Nonadiabatic Wave Packet Theory for 190(7)
Tetra-Atomic Reaction of AB + CD->ABC + D
or AB + CD
8.2.3 Diabatic Potential Energy Surfaces 197(1)
for Nonadiabatic Tri-Atomic and
Tetra-Atomic Reactions
8.2.4 Derivation of Rate Constants from 198(1)
Quantum Wave Packet Calculation
8.3 Application to Nonadiabatic and 199(9)
Adiabatic Processes in Tri-Atomic and
Tetra-Atomic and Polyatomic Reaction Systems
8.3.1 Rate Constant Computations for 199(5)
Nonadiabatic Reactions
8.3.2 Rate Constant Computations for 204(4)
Adiabatic Reactions
8.4 Conclusions and Prospects 208(1)
References 209(4)
Chapter 9 Understanding Reactivity with Reduced 213(20)
Potential Energy Landscapes: Recent Advances
and New Directions
Bryan R. Goldsmith
Anthony Fong
Baron Peters
9.1 Introduction 213(1)
9.2 Background 214(3)
9.3 Reduced Potential Energy Surface 217(2)
9.4 RPES Algorithm to Study Catalysis on 219(9)
Amorphous Supports
9.4.1 Sequential Nonlinear Programming 221(3)
Algorithm Formulation
9.4.2 Model Energy Landscape 224(1)
9.4.3 Cluster Model of Proton Transfer 225(1)
between Anchored Amine and Oxo Ligand
9.4.4 Ethene Insertion During 226(2)
Polymerization on the Phillips Catalyst
9.5 Conclusions 228(1)
Acknowledgements 228(1)
References 229(4)
Chapter 10 Quantum-Classical Lionville Dynamics 233(27)
of Condensed Phase Quantum Processes
Gabriel Hanna
Raymond Kapral
10.1 Introduction 233(2)
10.2 Nonadiabatic Dynamics 235(2)
10.3 Quantum-Classical Liouville Dynamics 237(2)
10.4 Simulation of Quantum-Classical 239(1)
Dynamics
10.5 Proton Transfer Reactions 240(4)
10.6 Linear and Nonlinear Vibrational 244(10)
Spectra
10.6.1 Linear Optical Response 247(2)
10.6.2 Third Order Optical Response 249(1)
10.6.3 1D- and 2D-IR Spectroscopy of a 250(4)
Solvated Hydrogen-Bonded Complex
10.7 Concluding Remarks and Perspectives 254(1)
References 255(5)
Chapter 11 Free Energetics and Kinetics of 260(23)
Charge Transfer and Shift Reactions in
Room-Temperature Ionic Liquids
Youngseon Shim
Hyung J. Kim
11.1 Introduction 260(1)
11.2 Formulation of Unimolecular ET 261(3)
Reactions
11.2.1 ET Free Energetics 261(2)
11.2.2 ET Kinetics 263(1)
11.3 Electron-Exchange Reaction 264(8)
11.3.1 Simulation Models and Methods 264(1)
11.3.2 ET Reaction Free Energy 265(1)
11.3.3 Barrier Crossing 266(2)
11.3.4 Activation and Deactivation 268(3)
11.3.5 Overall ET Kinetics 271(1)
11.4 SN1 Ionization Reaction 272(5)
11.4.1 Models and Methods 272(2)
11.4.2 Ionization Free Energy and Pathway 274(2)
11.4.3 Barrier Crossing Dynamics 276(1)
11.5 Conclusions 277(1)
Acknowledgements 278(1)
References 278(5)
Chapter 12 Semi-Classical Treatments of 283(36)
Electron Transfer Rate from Weak to Strong
Electronic Coupling Regime
Yi Zhao
12.1 Introduction 283(2)
12.2 Nonadiabatic Transition State Theory 285(6)
for Electron Transfer
12.3 Electron Transfer Rate Theory 291(10)
Incorporated Solvent Dynamic Effect
12.3.1 Quantum Kramer-Like Theory 292(5)
12.3.2 Extended Sumi-Marcus Theory 297(4)
12.4 Time-Dependent Wavepacket Diffusion 301(6)
Approach
12.5 Applications 307(6)
12.5.1 Electron Transfer within 307(1)
Charge-Localized Dinitroaromatic Radical
Anions
12.5.2 Ab Initio Calculations on the 308(2)
Intramolecular Electron Transfer Rates of
a Bis(hydrazine) Radical Cation
12.5.3 Electron Mobilities of N-type 310(3)
Organic Semiconductors from
Time-Dependent Wavepacket Diffusion
Method: Pentacenequinone Derivatives
12.6 Conclusions 313(1)
Acknowledgements 313(1)
References 313(6)
Chapter 13 Modified Zusman Equation for Quantum 319(18)
Solvation Dynamics and Rate Processes
Hou-Dao Zhang
Jian Xu
Rui-Xue Xu
YiJing Yan
13.1 Introduction 319(2)
13.2 Zusman Equation via the Conventional 321(4)
Approach
13.2.1 Caldeira-Leggett's Master Equation 321(2)
13.2.2 The Zusman Equation 323(2)
13.3 Modified Zusman Equation versus HEOM 325(4)
13.3.1 The HEOM Formalism 325(1)
13.3.2 The Equivalent Modified ZE 326(2)
13.3.3 Accuracy Control Criterion 328(1)
13.4 Kinetic Rates via Hierarchy Green's 329(5)
Functions
13.4.1 Kinetic Rate Equation versus 329(1)
Quantum Dissipative Dynamics
13.4.2 Formalism of the Hierarchy.Green's 330(2)
Functions
13.4.3 Analytical Solutions to Kinetics 332(2)
Rate Between Two States
13.5 Conclusions 334(1)
Acknowledgements 335(1)
References 335(2)
Chapter 14 Time-Dependent Treatment of SVRT 337(15)
Model for Polyatom-Polyatom Reaction
John Z.H. Zhang
14.1 Introduction 337(1)
14.2 The SVRT Model for a Polyatom-Polyatom 338(7)
Reaction
14.2.1 Hamiltonian for the Target 339(2)
Molecule T
14.2.2 Hamiltonian for the Reactant 341(1)
Molecule R
14.2.3 SVRT Hamiltonian for the 341(1)
Polyatom-Polyatom Collision System
14.2.4 Molecular Rotation Eigenfunction 342(3)
14.3 TD Wavepacket Treatment 345(3)
14.3.1 Basis Set Expansion 345(1)
14.3.2 Total Angular Momentum 345(1)
Eigenfunction
14.3.3 Propagation of the Wavefunction 346(2)
14.4 The ASVRT Model for a 348(2)
Polyatom-Polyatom Reaction
14.5 Conclusions 350(1)
References 350(2)
Chapter 15 Role of Water in Radical Reactions: 352(27)
Molecular Simulation and Modelling
Dorota Swiatla-Wojcik
15.1 Introduction 352(2)
15.2 Physical and Solvent Properties of 354(1)
Water
15.3 Hydrogen Bonds in Water Solvent 355(10)
15.3.1 Definitions of H-Bond in Molecular 358(2)
Simulations
15.3.2 H-Bonds from Ambient to 360(1)
Supercritical Conditions
15.3.3 H-Bonding Effect on Solutes 361(4)
15.4 Applications 365(8)
15.4.1 Modelling Rate Constants by the 365(7)
Noyes Relationship
15.4.2 Radical Reactions Involving Water 372(1)
as a Reactant
15.5 Conclusions 373(1)
References 374(5)
Chapter 16 Molecular Modelling of Proton 379(29)
Transfer Kinetics in Biological Systems
Patrick Bertrand
16.1 Introduction 379(1)
16.2 Biological Proton Transfers 380(2)
16.2.1 Biological Systems Involving 380(1)
Proton Transfers
16.2.2 Kinetic Data 381(1)
16.3 Modelling Biological Proton Transfers: 382(8)
Basic Ingredients
16.3.1 Introduction 382(2)
16.3.2 Molecular Dynamics: Quantum 384(1)
Mechanics/Molecular Mechanics Methods
16.3.3 Free-Energy Calculations 385(3)
16.3.4 Nuclear Quantum-Mechanical Effects 388(1)
16.3.5 Simulation of Proton Transfer 389(1)
Chain Kinetics
16.4 The Gramicidin Channel: a Paradigm for 390(3)
Water Wires in Proteins?
16.4.1 Proton Diffusion in Water: the 391(1)
Grotthuss Mechanism
16.4.2 Proton Conductance of the 391(1)
Gramicidin Channel
16.4.3 Modelling Proton Transfer in 392(1)
Gramicidin
16.5 Intramolecular Proton Transfer in 393(3)
Carbonic Anhydrase
16.5.1 Kinetic Data Obtained with CAII 394(1)
16.5.2 Modelling Proton Transfers in 394(2)
Carbonic Anhydrase
16.6 Bacteriorhodopsin: A Light-Driven 396(4)
Proton Pump
16.6.1 Introduction 396(1)
16.6.2 Rate Constants 397(1)
16.6.3 Modelling Proton Transfers in 398(2)
Bacteriorhodopsin
16.7 Electron Coupled Proton Transfers 400(3)
16.7.1 The Bacterial Photosynthetic 400(1)
Reaction Centre
16.7.2 Cytochrome c Oxidase 401(2)
16.8 Conclusions 403(1)
Acknowledgements 403(1)
References 403(5)
Chapter 17 Putting Together the Pieces: A 408(38)
Global Description of Valence and Long-Range
Forces via Combined Hyperbolic Inverse Power
Representation of the Potential Energy Surface
A.J.C. Varandas
17.1 Introduction 408(7)
17.2 The CHIPR Method 415(6)
17.2.1 The Underlying Many-Body Expansion 415(2)
17.2.2 Coordinates and n-Body 417(3)
Representations
17.2.3 Primitives versus Contracted Basis 420(1)
17.3 Case Studies 421(17)
17.3.1 Two-Body Systems 421(2)
17.3.2 Three-Body Systems 423(15)
17.4 Conclusions 438(1)
Acknowledgements 438(1)
References 439(7)
Chapter 18 Extension of Marcus Rate Theory to 446(16)
Electron Transfer Reactions with Large
Solvation Changes
Guillaume Jeanmairet
Daniel Borgis
Anne Boutin
Rodolphe Vuilleumier
18.1 Introduction 446(2)
18.2 Marcus Theory: A Gaussian Solvation 448(3)
(GS) Model
18.3 Extension to a Non-Gaussian Solvation 451(2)
(NGS) Model
18.4 Incidence of the NGS Model on Marcus 453(1)
Rate Theory
18.5 Application to Realistic Electron 454(5)
Transfer Systems
18.6 Conclusions 459(1)
References 460(2)
Chapter 19 Theoretical Studies on Mechanism and 462(32)
Kinetics of Atmospheric Chemical Reactions
L. Sandhiya
K. Senthilkumar
19.1 Introduction 462(1)
19.2 Potential Energy Hypersurfaces 463(2)
19.3 Reaction Path and Reaction Phases 465(1)
19.4 Thermodynamic Parameters 466(1)
19.5 Reaction Rate Theory 467(3)
19.6 Tropospheric Chemistry 470(1)
19.7 Example: Understanding the Reactivity 471(18)
of 2,3-Dimethylphenol with OH Radical in
the Atmosphere
19.7.1 Computational Methodology 472(1)
19.7.2 Results and Discussions 473(16)
19.8 Conclusions and Outlook 489(1)
References 490(4)
Chapter 20 Computation of Intrinsic RRKM and 494(36)
Non-RRKM Unimolecular Rate Constants
Amit Kumar Paul
Sujitha Kolakkandy
Subha Pratihar
William L. Hase
20.1 Introduction 494(1)
20.2 The RRKM Rate Constant for a 495(3)
Microcanonical Ensemble
20.2.1 Derivation of the RRKM Rate 495(2)
Constant
20.2.2 The RRKM Rate Constant as an 497(1)
Average Flux
20.3 Intrinsic RRKM and Non-RRKM 498(11)
Unimolecular Dynamics
20.3.1 Rate Expressions 498(2)
20.3.2 Phase Space Structure and Dynamics 500(3)
20.3.3 Vibrational/Rotational Energy 503(4)
Levels
20.3.4 Phase Space Dynamics and Energy 507(2)
Levels, Classical/Quantum Correspondence,
and RRKM Theory
20.4 Examples of Intrinsic Non-RRKM Dynamics 509(4)
20.4.1 Experiments 509(1)
20.4.2 Simulations 510(3)
20.5 Calculating an Accurate RRKM Rate 513(6)
Constant
20.5.1 Variational RRKM Theory 513(2)
20.5.2 Anharmonic Correction 515(4)
20.6 Quantum Dynamics 519(6)
20.6.1 Isolated Resonances 519(2)
20.6.2 Overlapping Resonances 521(4)
References 525(5)
Chapter 21 Molecular Dynamics Simulation of 530(20)
Kinetic Isotope Effects in Enzyme-Catalyzed
Reactions
Jiali Gao
21.1 Introduction 530(3)
21.2 Methods 533(5)
21.2.1 Quantum Transition State Theory 533(2)
and Path Integral Simulations
21.2.2 Potential Energy Surface 535(1)
21.2.3 Integrated Path Integral-Free 536(2)
Energy Perturbation/Umbrella Sampling
(PI-FEP/UM) Method for Computing KIEs
21.3 Illustrative Examples 538(8)
21.3.1 Alanine Racemase 538(1)
21.3.2 Nitroalkane Oxidase 539(3)
21.3.3 Dihydrofolate Reductase 542(4)
21.4 Concluding Remarks 546(1)
Acknowledgements 546(1)
References 546(4)
Subject Index 550

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上