新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
FRET - Forster Resonance Energy Transfer: from Theory to Applications
发布日期:2015-07-16  浏览

FRET - Forster Resonance Energy Transfer: from Theory to Applications

[BOOK DESCRIPTION]

Meeting the need for an up-to-date and detailed primer on all aspects of the topic, this ready reference reflects the incredible expansion in the application of FRET and its derivative techniques over the past decade, especially in the biological sciences. This wide diversity is equally mirrored in the range of expert contributors. The book itself is clearly subdivided into four major sections. The first provides some background, theory, and key concepts, while the second section focuses on some common FRET techniques and applications, such as in vitro sensing and diagnostics, the determination of protein, peptide and other biological structures, as well as cellular biosensing with genetically encoded fluorescent indicators. The third section looks at recent developments, beginning with the use of fluorescent proteins, followed by a review of FRET usage with semiconductor quantum dots, along with an overview of multistep FRET. The text concludes with a detailed and greatly updated series of supporting tables on FRET pairs and Forster distances, together with some outlook and perspectives on FRET. Written for both the FRET novice and for the seasoned user, this is a must-have resource for office and laboratory shelves.

[TABLE OF CONTENTS]
Preface                                            xv
        List of Contributors                       xix
  Part One Background, Theory, and Concepts        1  (268)
    1 How I Remember Theodor Forster               3  (6)
          Herbert Dreeskamp
    2 Remembering Robert Clegg and Elizabeth       9  (14)
    Jares-Erijman and Their Contributions to
    FRET
          Thomas M. Jovin
      2.1 Biographical Sketch of Bob Clegg         10 (1)
      2.2 Biographical Sketch of Eli               11 (1)
      Jares-Erijman
      2.3 The Pervasive Influence of Gregorio      12 (1)
      Weber
      2.4 Contributions by Bob Clegg to FRET       12 (4)
      2.5 Contributions by Eli Jares-Erijman to    16 (2)
      FRET
      2.6 A Final Thought                          18 (5)
        References                                 19 (4)
    3 Forster Theory                               23 (40)
          B. Wieb van der Meer
      3.1 Introduction                             23 (1)
      3.2 Pre-Forster                              23 (2)
      3.3 Bottom Line                              25 (1)
      3.4 9000-Form, 9-Form, and Practical         26 (2)
      Expressions of the R60 Equation
      3.5 Overlap Integral                         28 (3)
      3.6 Zones                                    31 (2)
      3.7 Transfer Mechanisms                      33 (1)
      3.8 Kappa-Squared Basics                     34 (1)
      3.9 Ideal Dipole Approximation               35 (1)
      3.10 Resonance as an All-or-Nothing Effect   36 (3)
      3.11 Details About the All-or-Nothing        39 (2)
      Approximation of Resonance
      3.12 Classical Theory Completed              41 (1)
      3.13 Oscillator Strength-Emission            42 (1)
      Spectrum Relation for the Donor
      3.14 Oscillator Strength-Absorption          43 (1)
      Spectrum Relation for the Acceptor
      3.15 Quantum Mechanical Theory               44 (3)
      3.16 Transfer in a Random System             47 (1)
      3.17 Details for Transfer in a Random        48 (3)
      System
      3.18 Concentration Depolarization            51 (1)
      3.19 FRET Theory 1965--2012                  52 (11)
        References                                 59 (4)
    4 Optimizing the Orientation Factor            63 (42)
    Kappa-Squared for More Accurate FRET
    Measurements
          B. Wieb van der Meer
          Daniel M. van der Meer
          Steven S. Vogel
      4.1 Two-Thirds or Not Two-Thirds?            63 (2)
      4.2 Relevant Questions                       65 (1)
      4.3 How to Visualize Kappa-Squared?          65 (3)
      4.4 Kappa-Squared Can Be Measured in At      68 (2)
      Least One Case
      4.5 Averaging Regimes                        70 (2)
      4.6 Dynamic Averaging Regime                 72 (4)
      4.7 What Is the Most Probable Value for      76 (7)
      Kappa-Squared in the Dynamic Regime?
      4.8 Optimistic, Conservative, and            83 (2)
      Practical Approaches
      4.9 Comparison with Experimental Results     85 (5)
      4.10 Smart Simulations Are Superior          90 (2)
      4.11 Static Kappa-Squared                    92 (9)
      4.12 Beyond Regimes                          101(1)
      4.13 Conclusions                             102(3)
        References                                 103(2)
    5 How to Apply FRET: From Experimental         105(60)
    Design to Data Analysis
          Niko Hildebrandt
      5.1 Introduction: FRET -- More Than a        105(1)
      Four-Letter Word!
      5.2 FRET: Let's get started!                 106(1)
      5.3 FRET: The Basic Concept                  107(5)
      5.4 FRET: Inevitable Mathematics             112(6)
        5.4.1 Forster Distance (or Forster         112(1)
        Radius)
        5.4.2 FRET Efficiency                      113(1)
        5.4.2.1 Determination by Donor Quenching   113(1)
        5.4.2.2 Determination by Acceptor          113(1)
        Sensitization
        5.4.2.3 Determination by Donor             114(1)
        Quenching and Acceptor Sensitization
        5.4.2.4 Determination by Donor             115(1)
        Photobleaching
        5.4.2.5 Determination by Acceptor          115(1)
        Photobleaching
        5.4.3 FRET with Multiple Donors and/or     116(2)
        Acceptors
      5.5 FRET: The Experiment                     118(21)
        5.5.1 The Donor-Acceptor FRET Pair         118(1)
        5.5.2 Forster Distance Determination       119(3)
        5.5.3 The Main FRET Experiment             122(1)
        5.5.3.1 Steady-State FRET Measurements     123(7)
        5.5.3.2 Time-Resolved FRET Measurements    130(3)
        5.5.3.3 Interpretation of Time-Resolved    133(6)
        FRET Data
      5.6 FRET beyond Forster                      139(16)
        5.6.1 Time-Resolved FRET with              140(1)
        Lanthanide-Based Donors
        5.6.1.1 Terbium to Quantum Dot FRET        141(6)
        Using Time-Resolved Donor Quenching and
        Acceptor Sensitization Analysis
        5.6.2 BRET and CRET                        147(1)
        5.6.3 Energy Transfer to Metal             148(2)
        Nanoparticles (FRET, NSET, DMPET,
        NPILM, etc.)
        5.6.4 Other Transfer Mechanisms            150(1)
        5.6.4.1 Electron Exchange Energy           151(1)
        Transfer (Dexter Transfer)
        5.6.4.2 Charge Transfer (Marcus Theory)    152(1)
        5.6.4.3 Plasmon Coupling                   153(1)
        5.6.4.4 Singlet Oxygen Diffusion           154(1)
      5.7 Summary and Outlook                      155(10)
        References                                 156(9)
    6 Materials for FRET Analysis: Beyond          165(104)
    Traditional Dye-Dye Combinations
          Kim E. Sapsford
          Bridget Wildt
          Angela Mariani
          Andrew B. Yeatts
          Igor Medintz
      6.1 Introduction                             165(1)
      6.2 Bioconjugation                           166(5)
      6.3 Organic Materials                        171(17)
        6.3.1 Ultraviolet, Visible, and            171(2)
        Near-Infrared Emitting Dyes
        6.3.2 Quencher Molecules                   173(2)
        6.3.3 Environmentally Sensitive            175(4)
        Fluorophores
        6.3.4 Dye-Modified                         179(1)
        Microspheres/Nanomaterials
        6.3.5 Dendrimers and Polymer               180(2)
        Macromolecules
        6.3.6 Photochromic Dyes                    182(4)
        6.3.7 Carbon Nanomaterials                 186(2)
      6.4 Biological Materials                     188(23)
        6.4.1 Natural Fluorophores                 188(2)
        6.4.2 Nonnatural Amino Acids               190(2)
        6.4.3 Green Fluorescent Protein and        192(8)
        Derivatives
        6.4.4 Light-Harvesting Proteins            200(1)
        6.4.5 DNA-Based                            201(1)
        Macrostructures/Nanotechnology
        6.4.6 Enzyme-Generated Bioluminescence     201(8)
        6.4.7 Enzyme-Generated Chemiluminescence   209(2)
      6.5 Inorganic Materials                      211(20)
        6.5.1 Luminescent Lanthanide Complexes     212(5)
        and Doped Nano-/Microparticles
        6.5.2 Luminescent Transition Metal         217(2)
        Complexes
        6.5.3 Noble Metal Nanomaterials (Gold,     219(3)
        Silver, and Copper)
        6.5.4 Silicon-Based Materials              222(1)
        6.5.5 Semiconductor Nanocrystals           223(8)
      6.6 Multi-FRET Systems                       231(5)
      6.7 Summary and Outlook                      236(33)
        References                                 236(33)
  Part Two Common FRET Techniques/Applications     269(162)
    7 In Vitro FRET Sensing, Diagnostics, and      271(52)
    Personalized Medicine
          Samantha Spindel
          Jessica Granek
          Kim E. Sapsford
      7.1 Introduction                             271(1)
      7.2 Small Organic Molecules and Synthetic    272(1)
      Organic Polymers
      7.3 Carbohydrate--Lipid                      273(1)
      7.4 The Biotin--Avidin Interaction           273(2)
      7.5 Proteins and Peptides                    275(7)
        7.5.1 Binding Proteins                     275(2)
        7.5.2 Antigens and Epitope-Based           277(2)
        Peptide Sequences
        7.5.3 Peptide Sequences for Enzymatic      279(3)
        Sensing
      7.6 Antibodies                               282(5)
      7.7 Nucleic Acid (DNA/RNA)                   287(12)
        7.7.1 Molecular Beacons                    288(1)
        7.7.2 Polymerase Chain Reaction and FRET   289(1)
        7.7.2.1 FRET Hybridization Probes          290(1)
        7.7.2.2 TaqMan                             291(1)
        7.7.2.3 Scorpion Assay                     292(2)
        7.7.2.4 Others                             294(1)
        7.7.3 Isothermal Amplification             294(1)
        Reactions and FRET
        7.7.4 Clinical Applications of Nucleic     295(1)
        Acid Detection Using FRET
        7.7.4.1 Detection of Pathogens             295(1)
        7.7.4.2 Prognostic and Diagnostic          296(2)
        Applications
        7.7.4.3 Pharmacogenomics and               298(1)
        Personalized Medicine
      7.8 Aptamers                                 299(3)
      7.9 High-Throughput and Point-of-Care        302(3)
      Devices
        7.9.1 PoC Technology Advances              302(2)
        7.9.2 PoC Material Advances                304(1)
      7.10 Conclusions                             305(18)
        References                                 305(18)
    8 Single-Molecule Applications                 323(34)
          Thomas Pons
      8.1 Introduction                             323(1)
      8.2 Single-Molecule FRET of Immobilized      324(12)
      Molecules
        8.2.1 Experimental Setup                   324(1)
        8.2.1.1 Molecule Immobilization            324(1)
        8.2.1.2 Fluorophore Photostability         325(1)
        8.2.1.3 Optical Setup                      326(1)
        8.2.2 Data Analysis                        326(3)
        8.2.3 Applications                         329(5)
        8.2.4 Analyzing Complex FRET               334(2)
        Trajectories
      8.3 Single-Molecule FRET of Freely           336(10)
      Diffusing Molecules
        8.3.1 Experimental Setup                   336(1)
        8.3.2 Applications                         337(6)
        8.3.3 Advanced Solution smFRET Methods     343(1)
        8.3.3.1 Alternate Laser Excitation         343(1)
        8.3.3.2 Multiparameter Fluorescence        344(2)
        Detection
      8.4 Single-Molecule FRET Studies             346(5)
      Involving Multiple FRET Partners
        8.4.1 Multistep FRET                       347(1)
        8.4.2 Multi-Acceptor and Multi-Donor       348(3)
        Systems
      8.5 Conclusions and Perspectives             351(6)
        References                                 353(4)
    9 Implementation of FRET Technologies for      357(40)
    Studying the Folding and Conformational
    Changes in Biological Structures
          Philip J. Robinson
          Cheryl A. Woolhead
      9.1 Introduction to Using FRET in            357(1)
      Biological Systems
      9.2 Forster Formalism in the                 358(2)
      Determination of Biological Structures
      9.3 FRET Experiments in Complex              360(2)
      Biological Systems
        9.3.1 The Importance of Experimental       360(1)
        Design
        9.3.2 Site-Specific Labeling and           361(1)
        Choosing the Most Effective FRET Pair
      9.4 Biological Model System 1: The           362(3)
      Ribosome
        9.4.1 Intersubunit Rotation within the     363(2)
        Ribosome
        9.4.2 Dynamic Intrasubunit Movement        365(1)
        Within the Ribosome
      9.5 Biological System 2: Nascent             365(3)
      Polypeptide Structure
      9.6 Biological System 3:                     368(3)
      Chaperone-Mediated Protein Folding
        9.6.1 Signal Recognition Particle          368(1)
        9.6.2 Trigger Factor                       369(2)
      9.7 Biological System 4: Mature Protein      371(4)
      Folding Intermediates
        9.7.1 Unfolding Kinetics of Monellin       372(2)
        9.7.2 Intermediate Folding State of the    374(1)
        Src Homology 3 Domain
      9.8 Biological System 5: Intersubunit        375(3)
      Distance in Multimeric Protein Complexes
      9.9 Biological System 6: Protein-Protein     378(7)
      Interactions in the Assembly of Protein
      Polymers
        9.9.1 FtsZ Assembly and Subunit Exchange   379(1)
        9.9.2 Defining the Molecular Link in       380(5)
        Serpin Polymers
      9.10 Biological System 7: FRET in Nucleic    385(12)
      Acid Systems
        9.10.1 Determining the Structure and       386(2)
        Configuration of DNA Junctions
        9.10.2 Measuring the Opening and           388(2)
        Closing of a Nanoscale DNA Box
        9.10.3 FRET Between a DNA Polymerase       390(2)
        and Its Substrate
        References                                 392(5)
    10 FRET-Based Cellular Sensing with            397(34)
    Genetically Encoded Fluorescent Indicators
          Jonathan C. Claussen
          Niko Hildebrandt
          Igor Medintz
      10.1 Introduction                            397(2)
      10.2 Enzymes                                 399(8)
        10.2.1 Kinase Activity/Phosphorylation     399(4)
        10.2.2 Protease Activity                   403(4)
      10.3 Metabolites                             407(5)
        10.3.1 Sugars                              407(3)
        10.3.2 Glutamate                           410(2)
      10.4 Second Messengers                       412(9)
        10.4.1 cAMP                                412(3)
        10.4.2 cGMP                                415(2)
        10.4.3 Nitric Oxide                        417(2)
        10.4.4 Calcium                             419(2)
      10.5 Conclusions                             421(10)
        References                                 423(8)
  Part Three FRET with Recently Developed          431(224)
  Materials
    11 FRET with Fluorescent Proteins              433(42)
          Hiofan Hoi
          Yidan Ding
          Robert E. Campbell
      11.1 Introduction to FPs                     433(13)
        11.1.1 Wild-Type FPs                       433(1)
        11.1.1.1 Natural Sources                   433(1)
        11.1.1.2 Structure                         434(2)
        11.1.1.3 Chromophore Formation             436(2)
        11.1.2 Engineered FPs for FRET             438(1)
        Applications
        11.1.2.1 Overview                          438(2)
        11.1.2.2 Blue-Green FRET Pairs             440(1)
        11.1.2.3 Cyan-Yellow FRET Pairs            441(2)
        11.1.2.4 FRET with Orange, Red, and        443(2)
        Far-Red FPs
        11.1.2.5 Atypical FPs Useful for FRET      445(1)
        Applications
        11.1.3 Why Use FPs for FRET?               446(1)
      11.2 Using FPs for FRET Imaging              446(16)
        11.2.1 Photophysical Properties and        446(1)
        Typical Forster Radii
        11.2.1.1 Overview                          446(1)
        11.2.1.2 Spectral Overlap                  447(2)
        11.2.1.3 Orientation Factors               449(1)
        11.2.2 Potential Sources of Artifacts      450(1)
        During FRET Imaging
        11.2.2.1 Photobleaching                    450(1)
        11.2.2.2 Photoconversion                   451(1)
        11.2.2.3 pH Dependence                     452(1)
        11.2.3 Biochemical and Structural          453(1)
        Considerations
        11.2.3.1 General Considerations when       453(1)
        Labeling Proteins with FPs
        11.2.3.2 Labeling Proteins for             454(1)
        Intermolecular FRET Experiments
        11.2.3.3 Labeling Proteins for             454(1)
        Intramolecular FRET Experiments
        11.2.3.4 FP Oligomerization and FRET       455(3)
        Efficiency
        11.2.4 Applications and Examples           458(1)
        11.2.4.1 Overview                          458(1)
        11.2.4.2 FRET Biosensor Case Study         459(1)
        11.2.4.3 FRET between FPs and Other        460(2)
        Donor or Acceptor Materials
      11.3 Conclusions                             462(13)
        References                                 463(12)
    12 Semiconductor Quantum Dots and FRET         475(132)
          W. Russ Algar
          Melissa Massey
          Ulrich J. Krull
      12.1 Introduction                            475(1)
      12.2 A Quick Review of FRET                  476(1)
      12.3 Quantum Dots                            477(22)
        12.3.1 A Brief History                     478(1)
        12.3.2 The Structure of Quantum Dots:      478(2)
        The Core
        12.3.3 The Optical Properties of           480(2)
        Quantum Dots
        12.3.4 Overcoming the Limitations of       482(1)
        Molecular Fluorophores
        12.3.5 The Structure of Quantum Dots:      483(2)
        The Shell
        12.3.6 Quantum Confinement                 485(3)
        12.3.7 Quantum Dot Photophysics            488(3)
        12.3.8 Quantum Dot Synthesis               491(2)
        12.3.9 Quantum Dot Coatings                493(3)
        12.3.10 Quantum Dot Bioconjugation         496(3)
        12.3.11 Quantum Dot Nomenclature in        499(1)
        This Chapter
      12.4 Quantum Dots and FRET                   499(9)
        12.4.1 Quantum Dots as Donors              499(3)
        12.4.2 Applicability of the Forster        502(2)
        Formalism
        12.4.3 QDs as Acceptors                    504(2)
        12.4.4 The Importance of Bioconjugate      506(2)
        Chemistry
      12.5 Quantum Dots as Donors in Biological    508(44)
      Applications
        12.5.1 Association and Dissociation to     508(1)
        Modulate QD-FRET
        12.5.1.1 Bioanalysis of Carbohydrates      509(1)
        12.5.1.2 Homogeneous Immunoassays          510(1)
        12.5.1.3 Hybridization Assays              511(5)
        12.5.1.4 Bioanalyses Using Aptamers and    516(3)
        DNAzymes
        12.5.1.5 Bioanalysis of Hydrolytic         519(5)
        Enzymes
        12.5.1.6 Gene Delivery                     524(1)
        12.5.2 Changes in Distance to Modulate     524(4)
        QD-FRET
        12.5.3 Conformational Insights from        528(2)
        QD-FRET
        12.5.4 Dynamic Modulation of the           530(4)
        Spectral Overlap Integral and QD-FRET
        12.5.5 Single-Pair QD-FRET                 534(6)
        12.5.6 Solid-Phase QD-FRET                 540(2)
        12.5.6.1 Biomolecular Surface Tethers      542(2)
        12.5.6.2 Chemical Conjugation to an        544(1)
        Interface
        12.5.6.3 Interfacial Ligand Exchange       545(2)
        12.5.6.4 Electrostatic Immobilization      547(1)
        12.5.6.5 Advantages of Immobilized QDs     548(1)
        12.5.7 Photodynamic Therapy                549(3)
      12.6 Quantum Dots as Acceptors in            552(17)
      Biological Applications
        12.6.1 Chemiluminescence Resonance         553(2)
        Energy Transfer (CRET)
        12.6.2 Bioluminescence Resonance Energy    555(5)
        Transfer (BRET)
        12.6.3 Lanthanide Donors                   560(5)
        12.6.4 Quantum Dot Donors (for Quantum     565(4)
        Dot Acceptors)
      12.7 Energy Transfer between Quantum Dots    569(9)
      and Other Nanomaterials
        12.7.1 Gold Nanoparticles                  569(6)
        12.7.2 Carbon Nanomaterials                575(1)
        12.7.2.1 Graphene and Graphene Oxide       575(2)
        12.7.2.2 Carbon Nanotubes                  577(1)
      12.8 Nonbiological Applications of           578(5)
      Quantum Dots and FRET
        12.8.1 Photovoltaic Cells                  580(2)
        12.8.2 Light-Emitting Diodes (LEDs)        582(1)
      12.9 Summary                                 583(24)
        References                                 584(23)
    13 Multistep FRET and Nanotechnology           607(48)
          Bo Albinsson
          Jonas K. Hannestad
      13.1 Introduction                            607(1)
      13.2 Fundamentals of Multistep FRET          608(7)
        13.2.1 Hetero-FRET                         609(2)
        13.2.2 Multicolor FRET and                 611(1)
        Alternating-Laser Excitation
        13.2.3 Homo-FRET                           612(3)
      13.3 Energy Transfer in Photosynthesis       615(2)
      13.4 Photonic Wires and Multistep FRET in    617(30)
      Nanotechnology
        13.4.1 Photonic Wires                      617(11)
        13.4.2 Beyond Wires                        628(4)
        13.4.3 Light Harvesting                    632(6)
        13.4.4 Functional Control                  638(3)
        13.4.5 Quantum Dots in Multistep FRET      641(2)
        13.4.6 Potential Outputs and Uses for      643(4)
        Channeled Excitation Energy
      13.5 Summary                                 647(1)
      13.6 Note Added in Proof                     648(7)
        References                                 648(7)
  Part Four Supporting Information and             655(112)
  Conclusions
    14 Data                                        657(100)
          Alice C. Byrne
          Matthew M. Byrne
          George Coker
          Kelly B. Gemmill
          Christopher Spillmann
          Igor Medintz
          Seth L. Sloan
          B. Wieb van der Meer
      14.1 Tables before 1987                      658(1)
      14.2 Introduction to the Table of            658(45)
      Traditional Chromophores
      14.3 Forster Distances and Other FRET        703(1)
      Data before 1994
      14.4 Forster Distances for Traditional       703(1)
      Probes More Recent Than 1993
      14.5 FRET Data on Fluorescent Proteins       703(39)
      14.6 FRET Data on Quantum Dots               742(1)
      14.7 Donor--Acceptor Pairs with a Forster    742(2)
      Distance in a Given Range
      14.8 Table--Reference Directory              744(13)
        References                                 745(12)
    15 Outlook on FRET: The Future of Resonance    757(10)
    Energy Transfer
      15.1 A Rosy Crystal Ball View of FRET        757(1)
          Thomas M. Jovin
      15.2 Do Not Ask What FRET Can Do for You,    757(1)
      Ask What You Can Do for FRET
          B. Wieb van der Meer
      15.3 FRET: Future Research with an           758(2)
      Exciting Technology
          Niko Hildebrandt
      15.4 Future of FRET                          760(1)
          Kim E. Sapsford
      15.5 Outlook on Single-Molecule FRET         760(1)
          Thomas Pons
      15.6 Outlook on FRET with fluorescent        761(1)
      proteins
          Robert E. Campbell
      15.7 Luminescent Nanoparticles: Scaffolds    762(5)
      for Assembling "Smarter" FRET Probes
          W. Russ Algar
        References                                 764(3)
Index                                              767

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上