[内容简介]《椭圆曲线算术中的高等论题(英文版)》内容简介:美国哈佛大学从1977年开始,曾多次举办”椭圆曲线” 班,《椭圆曲线算术中的高等论题(英文版)》作者是该讨论班成员之一。椭圆曲线是一个古老的数学课题,最近由于代数数论和代数几何等现代数学的进展,使它得到了新的活力。《椭圆曲线算术中的高等论题(英文版)》是以1986年版的《椭圆曲线的算术理论》为蓝本,但在知识体系上做了较大的改动形成了这不教程,讲述上也更加专业,但在思想上是作者前《椭圆曲线算术中的高等论题(英文版)》的延续。包括椭圆和模型函数;复乘方法;椭圆曲线;Néron模型;复域上的椭圆曲线等内容。每章末都配有大量习题。目次:椭圆和模型函数;复乘方法;椭圆曲线;Néron模型;复域上的椭圆曲线。
[目次]CHAPTER Ⅰ
Elliptic and Modular Functions
The Modular Group
The Modular Curve X(1)
Modular Functions
Uniformization and Fields of Moduli
Elliptic Functions Revisited
q-Expansions of Elliptic Functions
q-Expansions of Modular Functions
Jacobi's Product Formula for A(T)
Hecke Operators
Hecke Operators Acting on Modular Forms
L-Series Attached to Modular Forms
Exercises
CHAPTER Ⅱ
Complex Multiplication
Complex Multiplication over C
Rationality Questions
Class Field Theory —— A Brief Review
The Hilbert Class Field
The Maximal Abelian Extension
Integrality of j
Cyclotomic Class Field Theory
The Main Theorem of Complex Multiplication
The Associated GrSssencharacter
The L-Series Attached to a CM Elliptic Curve
Exercises
CHAPTER Ⅲ
Elliptic Surfaces
Elliptic Curves over Function Fields
The Weak Mordell-Weil Theorem
Elliptic Surfaces
Heights on Elliptic Curves over Unction Fields
Split Elliptic Surfaces and Sets of Bounded Height
The Mordell-Weil Theorem for Fhnction Fields
The Geometry of Algebraic Surfaces
The Geometry of Fibered Surfaces
The Geometry of Elliptic Surfaces
Heights and Divisors on Varieties
Specialization Theorems for Elliptic Surfaces
Integral Points on Elliptic Curves over Function Fields
Exercises
CHAPTER Ⅳ
The N6ron Model
Group Varieties
Schemes and S-Schemes
Group Schemes
Arithmetic Surfaces
N6ron Models
Existence of N6ron Models
Intersection Theory, Minimal Models, and Blowing-Up
The Special Fiber of a N6ron Model
Tate's Algorithm to Compute the Special Fiber
The Conductor of an Elliptic Curve
Ogg's Formula
Exercises
CHAPTER Ⅴ
Elliptic Curves over Complete Fields
Elliptic Curves over C
Elliptic Curves over R
The Tate Curve
The Tate Map Is Surjective
Elliptic Curves over p-adic Fields
Some Applications of p-adic Uniformization
Exercises
CHAPTER Ⅵ
Local Height Functions
Existence of Local Height Functions
Local Decomposition of the Canonical Height
Archimedean Absolute Values —— Explicit Formulas
Non-Archimedean Absolute Values —— Explicit Formulas
Exercises
APPENDIX A
Some Useful Tables
Bernoulli Numbers and (2k)
Fourier Coefficients of A(T) and j(T)
Elliptic Curves over Q with Complex Multiplication
Notes on Exercises
References
List of Notation
Index