新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
重整化变换的复动力学
发布日期:2010-12-20  浏览
[内容简介]
    本书系统论述复解析动力系统的基本理论,并简要介绍重整化变换的统计物理学背景。在此基础上,介绍近年来关于重整化变换复动力系统的研究成果,主要内容包括:Fatou-Julia理论、Yang-Lee零点与重整化变换的Julia集、Fatou集和Julia集上动力学的当代研究进展、重整化变换的动力学性态、自由能量的临界指数等。
    本书适合数学、物理及相关工程专业高年级大学生和研究生阅读,同时也可作为广大非线性研究人员及相关工程技术人员的参考书。

[目录]
第1章 Fatou-Julia理论
1.1 Fatou集和Jualia集
1.2 周期点附近的动力学性态
1.3 斥性周期点的稠密性与齐性定理
第2章 Yang-Lee零点与重整化变换
2.1 Ising模型与Potts模型
2.2 Lee-Yang单位圆定理
2.3 重整化变换
2.4 Yan-Lee零点的Julia集
第3章 一维实映照的周期轨道
3.1 Sarkovskii定理
3.2 分支理论
3.3 临界点与吸性周期轨道
3.4 符号动力系统方法
第4章 Fatou集上的动力学

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上