新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
时间序列分析:单变量和多变量方法(第2版)(经济科学译库)
发布日期:2010-03-17  浏览
[内容简介]
    《时间序列分析:单变量和多变量方法(第2版)》不仅对单变量与多变量时间序列的时域和频域分析提供了一个全面介绍,而且在书中包含了许多单变量和多变量时问序列模型的新进展,如逆自相关函数、扩展样本自相关函数、干预分析及干预探测、向量自回归移动平均模型、偏滞后自相关矩阵函数、局部过程、状态空间模型、卡尔曼滤波、非季节和季节模型的单位根检验等许多内容。《时间序列分析:单变量和多变量方法(第2版)》结合大量的应用实例说明时间序列分析方法的应用,极大地方便了读者对这些方法的学习和理解。
[目录]
第1章 概述
1.1 引言
1.2 本书的例子和安排

第2章 基本概念
2.1 随机过程
2.2 自协方差和自相关函数
2.3 偏自相关函数
2.4 白噪声过程
2.5 均值、自协方差和自相关的估计
2.6 时间序列过程的移动平均和白回归表示
2.7 线性差分方程
练习

第3章 平稳时间序列模型
3.1 自回归过程
3.2 移动平均过程
3.3 AR(p)过程和MA(q)过程之间的对偶关系
3.4 自回归移动平均ARMA(p,q)过程
练习

第4章 非平稳时间序列模型
4.1 均值非平稳
4.2 自回归求和移动平均模型
4.3 方差和自协方差非平稳
练习

第5章 预报
5.1 引言
5.2 最小均方误差预报
5.3 预报的计算
5.4 对过去观测值加权平均的ARIMA预报
5.5 更新预报
5.6 最终预报函数
5.7 数值实例
练习

第6章 模型识别
6.1 模型识别的步骤
6.2 实例
6.3 逆自相关函数
6.4 扩展样本自相关函数和其他识别方法
练习

第7章 参数估计、诊断检验和模型选择
7.l 矩方法
7.2 极大似然方法
7.3 非线性估计
7.4 在时间序列分析中的普通最小二乘估计
7.5 诊断检验
7.6 有关序列w1至w7的实例
7.7 模型选择准则
练习

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上