 [内容简介]
[内容简介]
        Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs.
        • Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers
        • Blends analog and microwave engineering approaches for RFIC design at high frequencies
        • Includes problems at the end of each chapter
         
         
        [目录]
        
         
        PREFACE xvii
        1 INTRODUCTION 1
        Problems 5
        2 FUNDAMENTALS OF ELECTROMAGNETICS 6
        2.1 EM Field Parameters 6
        2.2 Maxwell’s Equations 7
        2.3 Auxiliary Relations 8
        2.3.1 Constitutive Relations 8
        2.3.2 Current Relations 9
        2.4 Sinusoidal Time-Varying Steady State 9
        2.5 Boundary Conditions 10
        2.5.1 General Boundary Conditions 11
        2.5.2 Specific Boundary Conditions 11
        2.6 Wave Equations 12
        2.7 Power 13
        2.8 Loss and Propagation Constant in Medium 14
        2.9 Skin Depth 16
        2.10 Surface Impedance 17
        Problems 19
        3 LUMPED ELEMENTS 20
        3.1 Fundamentals of Lumped Elements 20
        3.1.1 Basic Equations 23
        3.2 Quality Factor of Lumped Elements 28
        3.3 Modeling of Lumped Elements 30
        3.4 Inductors 32
        3.4.1 Inductor Configurations 32
        3.4.2 Loss in Inductors 36
        3.4.3 Equivalent-Circuit Models of Inductors 39
        3.4.4 Resonance in Inductors 45
        3.4.5 Quality Factor of Inductors 46
        3.4.6 High Q Inductor Design Considerations 51
        3.5 Lumped-Element Capacitors 60
        3.5.1 Capacitor Configurations 60
        3.5.2 Equivalent-Circuit Models of Capacitors 63
        3.5.3 Resonance 68
        3.5.4 Quality Factor 69
        3.5.5 High Q Capacitor Design Considerations 71
        3.6 Lumped-Element Resistors 72
        3.6.1 Resistor Configurations 72
        3.6.2 Basic Resistor Equations 72
        3.6.3 Equivalent-Circuit Models of Resistors 75
        References 75
        Problems 76
        4 TRANSMISSION LINES 85
        4.1 Essentials of Transmission Lines 85
        4.2 Transmission-Line Equations 86
        4.2.1 General Transmission-Line Equations 86
        4.2.2 Sinusoidal Steady-State Transmission-Line Equations 91
        4.3 Transmission-Line Parameters 93
        4.3.1 General Transmission Lines 93
        4.3.2 Lossless Transmission Lines 96
        4.3.3 Low Loss Transmission Lines 96
        4.4 Per-Unit-Length Parameters R,L,C, and G 97
        4.4.1 General Formulation 97
        4.4.2 Formulation for Simple Transmission Lines 104
        4.5 Dielectric and Conductor Losses in Transmission Lines 107
        4.5.1 Dielectric Attenuation Constant 108
        4.5.2 Conductor Attenuation Constant 109
        4.6 Dispersion and Distortion in Transmission Lines 111
        4.6.1 Dispersion 111
        4.6.2 Distortion 111
        4.6.3 Distortion-Less Transmission Lines 113
        4.7 Group Velocity 115
        4.8 Impedance, Reflection Coefficients, and Standing-Wave Ratios 117
        4.8.1 Impedance 117
        4.8.2 Reflection Coefficients 119
        4.8.3 Standing-Wave Ratio 120
        4.8.4 Perfect Match and Total Reflection 122
        4.8.5 Lossless Transmission Lines 123
        4.9 Synthetic Transmission Lines 126
        4.10 Tem and Quasi-Tem Transmission-Line Parameters 128
        4.10.1 Static or Quasi-Static Analysis 129
        4.10.2 Dynamic Analysis 130
        4.11 Printed-Circuit Transmission Lines 132
        4.11.1 Microstrip Line 133
        4.11.2 CoplanarWaveguide 135
        4.11.3 Coplanar Strips 138
        4.11.4 Strip Line 139
        4.11.5 Slot Line 141
        4.11.6 Field Distributions 142
        4.12 Transmission Lines in RFICs 144
        4.12.1 Microstrip Line 145
        4.12.2 CoplanarWaveguide 146
        4.12.3 Coplanar Strips 149
        4.12.4 Strip Line 149
        4.12.5 Slot Line 150
        4.12.6 Transitions and Junctions Between Transmission Lines 150
        4.13 Multi-Conductor Transmission Lines 152
        4.13.1 Transmission-Line Equations 152
        4.13.2 Propagation Modes 156
        4.13.3 Characteristic Impedance and Admittance Matrix 157
        4.13.4 Mode Characteristic Impedances and Admittances 159
        4.13.5 Impedance and Admittance Matrix 161
        4.13.6 Lossless Multiconductor Transmission Lines 163
        References 173
        Problems 174
        Appendix 4: Transmission-Line Equations Derived From Maxwell’s Equations 182
        5 RESONATORS 186
        5.1 Fundamentals of Resonators 186
        5.1.1 Parallel Resonators 187
        5.1.2 Series Resonators 188
        5.2 Quality Factor 189
        5.2.1 Parallel Resonators 190
        5.2.2 Series Resonators 193
        5.2.3 Unloaded Quality Factor 195
        5.2.4 Loaded Quality Factor 195
        5.2.5 Evaluation of and Relation between Unloaded and Loaded Quality Factors 198
        5.3 Distributed Resonators 205
        5.3.1 Quality-Factor Characteristics 206
        5.3.2 Transmission-Line Resonators 207
        5.3.3 Waveguide Cavity Resonators 216
        5.4 Resonator’s Slope Parameters 231
        5.5 Transformation of Resonators 231
        5.5.1 Impedance and Admittance Inverters 231
        5.5.2 Examples of Resonator Transformation 236
        References 237
        Problems 238
        6 IMPEDANCE MATCHING 244
        6.1 Basic Impedance Matching 244
        6.1.1 Smith Chart 244
        6.2 Design of Impedance-Matching Networks 248
        6.2.1 Impedance-Matching Network Topologies 249
        6.2.2 Impedance Transformation through Series and Shunt Inductor and Capacitor 249
        6.2.3 Examples of Impedance-Matching Network Design 252
        6.2.4 Transmission-Line Impedance-Matching Networks 255
        6.3 Kuroda Identities 262
        References 266
        Problems 266
        7 SCATTERING PARAMETERS 271
        7.1 Multiport Networks 271
        7.2 Impedance Matrix 273
        7.3 Admittance Matrix 274
        7.4 Impedance and Admittance Matrix in RF Circuit Analysis 274
        7.4.1 T-Network Representation of Two-Port RF Circuits 275
        7.4.2 π-Network Representation of Two-Port RF Circuits 278
        7.5 Scattering Matrix 279
        7.5.1 Fundamentals of Scattering Matrix 279
        7.5.2 Examples for Scattering Parameters 287
        7.5.3 Effect of Reference-Plane Change on Scattering Matrix 288
        7.5.4 Return Loss, Insertion Loss, and Gain 290
        7.6 Chain Matrix 293
        7.7 Scattering Transmission Matrix 294
        7.8 Conversion Between Two-Port Parameters 295
        7.8.1 Conversion from [Z] to [ABCD] 295
        References 298
        Problems 298
        8 RF PASSIVE COMPONENTS 304
        8.1 Characteristics of Multiport RF Passive Components 304
        8.1.1 Characteristics of Three-Port Components 304
        8.1.2 Characteristics of Four-Port Components 309
        8.2 Directional Couplers 311
        8.2.1 Fundamentals of Directional Couplers 311
        8.2.2 Parallel-Coupled Directional Couplers 313
        8.3 Hybrids 326
        8.3.1 Hybrid T 326
        8.3.2 Ring Hybrid 328
        8.3.3 Branch-Line Coupler 335
        8.4 Power Dividers 339
        8.4.1 Even-Mode Analysis 340
        8.4.2 Odd-Mode Analysis 342
        8.4.3 Superimposition of Even and Odd Modes 343
        8.5 Filters 345
        8.5.1 Low Pass Filter 345
        8.5.2 High Pass Filter Design 357
        8.5.3 Band-Pass Filter Design 359
        8.5.4 Band-Stop Filter Design 361
        8.5.5 Filter Design Using Impedance and Admittance Inverters 364
        References 371
        Problems 372
        9 FUNDAMENTALS OF CMOS TRANSISTORS FOR RFIC DESIGN 379
        9.1 MOSFET Basics 379
        9.1.1 MOSFET Structure 379
        9.1.2 MOSFET Operation 382
        9.2 MOSFET Models 386
        9.2.1 Physics-Based Models 387
        9.2.2 Empirical Models 387
        9.2.3 SPICE Models 402
        9.2.4 Passive MOSFET Models 404
        9.3 Important MOSFET Frquencies 407
        9.3.1 fT 408
        9.3.2 fmax 408
        9.4 Other Important MOSFET Parameters 409
        9.5 Varactor Diodes 409
        9.5.1 Varactor Structure and Operation 409
        9.5.2 Varactor Model and Characteristics 410
        References 412
        Problems 412
        10 STABILITY 418
        10.1 Fundamentals of Stability 418
        10.2 Determination of Stable and Unstable Regions 421
        10.3 Stability Consideration for N-Port Circuits 427
        References 427
        Problems 428
        11 AMPLIFIERS 430
        11.1 Fundamentals of Amplifier Design 430
        11.1.1 Power Gain 430
        11.1.2 Gain Design 433
        11.2 Low Noise Amplifiers 443
        11.2.1 Noise Figure Fundamentals 443
        11.2.2 MOSFET Noise Parameters 446
        11.2.3 Noise Figure of Multistage Amplifiers 447
        11.2.4 Noise-Figure Design 448
        11.2.5 Design for Gain and Noise Figure 450
        11.3 Design Examples 451
        11.3.1 Unilateral Amplifier Design 451
        11.3.2 Bilateral Amplifier Design 454
        11.4 Power Amplifiers 455
        11.4.1 Power-Amplifier Parameters 455
        11.4.2 Power-Amplifier Types 458
        11.5 Balanced Amplifiers 470
        11.5.1 Differential Amplifiers 470
        11.5.2 Ninety-Degree Balanced Amplifiers 485
        11.5.3 Push–Pull Amplifiers 487
        11.6 Broadband Amplifiers 489
        11.6.1 Compensated Matching Networks 489
        11.6.2 Distributed Amplifiers 490
        11.6.3 Feedback Amplifiers 523
        11.6.4 Cascoded Common-Source Amplifiers 540
        11.7 Current Mirrors 548
        11.7.1 Basic Current Mirror 550
        11.7.2 Cascode Current Mirror 550
        References 552
        Problems 553
        A11.1 Fundamentals of Signal Flow Graph 563
        A11.2 Signal Flow Graph of Two-Port Networks 563
        A11.2.1 Transistor’s Signal Flow Graph 563
        A11.2.2 Input Matching Network’s Signal Flow Graph 564
        A11.2.3 Output Matching Network’s Signal Flow Graph 565
        A11.2.4 Signal Flow Graph of the Composite Two-Port Network 566
        A11.3 Derivation of Network’s Parameters Using Signal Flow Graphs 566
        A11.3.1 Examples of Derivation 567
        A11.3.2 Derivation of Reflection Coefficients and Power Gain 568
        References 571
        12 OSCILLATORS 572
        12.1 Principle of Oscillation 572
        12.1.1 Oscillation Conditions 573
        12.1.2 Oscillation Determination 574
        12.2 Fundamentals of Oscillator Design 575
        12.2.1 Basic Oscillators 576
        12.2.2 Feedback Oscillators 579
        12.3 Phase Noise 587
        12.3.1 Fundamentals of Phase Noise 588
        12.3.2 Phase Noise Modeling 593
        12.3.3 Low Phase-Noise Design Consideration 599
        12.3.4 Effects of Phase Noise on Systems 599
        12.3.5 Analysis Example of Effects of Phase Noise 601
        12.4 Oscillator Circuits 602
        12.4.1 Cross-Coupled Oscillators 602
        12.4.2 Distributed Oscillators 612
        12.4.3 Push-Push Oscillators 617
        References 626
        Problems 627
        13 MIXERS 633
        13.1 Fundamentals of Mixers 633
        13.1.1 Mixing Principle 633
        13.1.2 Mixer Parameters 636
        13.2 Mixer Types 641
        13.2.1 Single-Ended Mixer 642
        13.2.2 Single-Balanced Mixer 642
        13.2.3 Double-Balanced Mixer 646
        13.2.4 Doubly Double-Balanced Mixer 649
        13.3 Other Mixers 650
        13.3.1 Passive Mixer 650
        13.3.2 Image-Reject Mixer 651
        13.3.3 Quadrature Mixer 652
        13.3.4 Distributed Mixer 652
        13.4 Mixer Analysis and Design 656
        13.4.1 Switching Mixer Fundamental 656
        13.4.2 Single-Ended Mixer 658
        13.4.3 Single-Balanced Mixer 661
        13.4.4 Double-Balanced Mixer 663
        13.4.5 Source Degeneration in Mixer Design 665
        13.5 Sampling Mixer 667
        13.5.1 Fundamentals of Sampling 668
        13.5.2 Sampling Theory 669
        13.5.3 Sampling Process 670
        13.5.4 Sample and Hold 673
        13.5.5 Sampling Switch 678
        13.5.6 Integrated Sampling Mixer 678
        References 689
        Problems 690
        14 SWITCHES 694
        14.1 Fundamentals of Switches 694
        14.1.1 Switch Operation 694
        14.1.2 Important Parameters 695
        14.2 Analysis of Switching MOSFET 697
        14.2.1 Analysis of Shunt Transistor 697
        14.2.2 Analysis of Series Transistor 698
        14.2.3 Analysis of Combined Series and Shunt Transistors 699
        14.2.4 Selection of MOSFET 699
        14.2.5 Design Consideration for Improved Insertion Loss and Isolation 701
        14.3 SPST Switches 702
        14.3.1 SPST Switch Employing Two Parallel MOSFETs 702
        14.3.2 SPST Switch Employing Two Series MOSFETs 703
        14.3.3 SPST Switch Employing Two Series and Two Shunt MOSFETs 703
        14.3.4 SPST Switch Using Impedance or Admittance Inverters 703
        14.4 SPDT Switches 712
        14.4.1 SPDT Switch Topologies 712
        14.4.2 SPDT Switch Analysis 713
        14.5 Ultra-Wideband Switches 714
        14.5.1 Ultra-Wideband SPST Switch 715
        14.5.2 Ultra-Wideband T/R Switch 721
        14.6 Ultra-High-Isolation Switches 727
        14.6.1 Ultra-High-Isolation Switch Architecture and Analysis 727
        14.6.2 Ultra-High-Isolation SPST Switch Design 733
        14.7 Filter Switches 737
        References 739
        Problems 739
        15 RFIC SIMULATION, LAYOUT, AND TEST 747
        15.1 RFIC Simulation 748
        15.1.1 DC Simulation 749
        15.1.2 Small-Signal AC Simulation 749
        15.1.3 Transient Simulation 749
        15.1.4 Periodic Steady State Simulation 749
        15.1.5 Harmonic-Balance Simulation 750
        15.1.6 Periodic Distortion Analysis 751
        15.1.7 Envelope Simulation 751
        15.1.8 Periodic Small Signal Analysis 751
        15.1.9 EM Simulation 751
        15.1.10 Statistical and Mismatch Simulation 754
        15.2 RFIC Layout 754
        15.2.1 General Layout Issues 754
        15.2.2 Passive and Active Component Layout 755
        15.3 RFIC Measurement 758
        15.3.1 On-Wafer Measurement 759
        15.3.2 Off-Chip Measurement 782
        References 784
        Problems 784
        16 SYSTEMS 788
        16.1 Fundamentals of Systems 788
        16.1.1 Friis Transmission Equation 788
        16.1.2 System Equation 790
        16.1.3 Signal-to-Noise Ratio of System 791
        16.1.4 Receiver Sensitivity 793
        16.1.5 System Performance Factor 794
        16.1.6 Power 796
        16.1.7 Angle and Range Resolution 797
        16.1.8 Range Accuracy 800
        16.2 System Type 801
        16.2.1 Pulse System 801
        16.2.2 FMCW System 803
        16.2.3 Receiver Architectures 808
        References 826
        Problems 826
        APPENDIX: RFIC DESIGN EXAMPLE: MIXER 830
        A1.1 Circuit Design Specifications and General Design Information 830
        A1.2 Mixer Design 830
        A1.2.1 Single-Ended to Differential Input Active Balun 832
        A1.2.2 Double-Balanced Gilbert Cell 832
        A1.2.3 Differential to Single-Ended Output Active Balun 834
        A1.2.4 Band-Pass Filter 834
        A1.3 Mixer Optimization and Layout 835
        A1.4 Simulation Results 836
        A1.4.1 Stability 836
        A1.4.2 Return Loss 836
        A1.4.3 Conversion Gain 836
        A1.4.4 Noise Figure 837
        A1.4.5 Other Mixer Performance 837
        A1.5 Measured Results 838
        References 840
        INDEX 841