新书报道
当前位置: 首页 >> 电类优秀教材 >> 正文
Frontiers of Intelligent Control and Information Processing
发布日期:2015-12-17  浏览

Frontiers of Intelligent Control and Information Processing

[Book Description]

The current research and development in intelligent control and information processing have been driven increasingly by advancements made from fields outside the traditional control areas, into new frontiers of intelligent control and information processing so as to deal with ever more complex systems with ever growing size of data and complexity.As researches in intelligent control and information processing are taking on ever more complex problems, the control system as a nuclear to coordinate the activity within a system increasingly need to be equipped with the capability to analyze, and reason so as to make decision. This requires the support of cognitive components, and communication protocol to synchronize events within the system to operate in unison.In this review volume, we invited several well-known experts and active researchers from adaptive/approximate dynamic programming, reinforcement learning, machine learning, neural optimal control, networked systems, and cyber-physical systems, online concept drift detection, pattern recognition, to contribute their most recent achievements into the development of intelligent control systems, to share with the readers, how these inclusions helps to enhance the cognitive capability of future control systems in handling complex problems. This review volume encapsulates the state-of-art pioneering works in the development of intelligent control systems. Proposition and evocations of each solution is backed up with evidences from applications, could be used as references for the consideration of decision support and communication components required for today intelligent control systems.

[Table of Contents]
Preface                                            v
1 Dynamic Graphical Games: Online Adaptive         1  (48)
Learning Solutions Using Approximate Dynamic
Programming
          Mohammed I. Abouheaf
          Frank L. Lewis
    1.1 Introduction                               2  (2)
    1.2 Graphs and Synchronization of              4  (3)
    Multi-Agent Dynamical Systems
      1.2.1 Graphs                                 4  (1)
      1.2.2 Synchronization and tracking error     5  (2)
      dynamics
    1.3 Multiple Player Cooperative Games on       7  (14)
    Graphs
      1.3.1 Graphical games                        7  (1)
      1.3.2 Comparison of graphical games with     8  (1)
      standard dynamic games
      1.3.3 Nash equilibrium for graphical games   9  (1)
      1.3.4 Hamiltonian equation for dynamic       9  (3)
      graphical games
      1.3.5 Bellman equation for dynamic           12 (2)
      graphical games
      1.3.6 Discrete Hamilton-Jacobi theory:       14 (5)
      Equivalence of Bellman and discrete-time
      Hamilton Jacobi equations
      1.3.7 Stability and Nash solution of the     19 (2)
      graphical games
    1.4 Approximate Dynamic Programming for        21 (12)
    Graphical Games
      1.4.1 Heuristic dynamic programming for      21 (6)
      graphical games
      1.4.2 Dual heuristic programming for         27 (6)
      graphical games
    1.5 Coupled Riccati Recursions                 33 (2)
    1.6 Graphical Game Solutions by                35 (3)
    Actor-Critic Learning
      1.6.1 Actor-critic networks and tuning       35 (2)
      1.6.2 Actor-critic offline tuning with       37 (1)
      exploration
      1.6.3 Actor-critic online tuning in          38 (1)
      real-time
    1.7 Graphical Game Example and Simulation      38 (6)
    Results
      1.7.1 Riccati recursion offline solution     39 (1)
      1.7.2 Simulation results using offline       40 (1)
      actor-critic tuning
      1.7.3 Simulation results using online        41 (3)
      actor-critic tuning
    1.8 Conclusions                                44 (5)
2 Reinforcement-Learning-Based Online Learning     49 (34)
Control for Discrete-Time Unknown Nonaffine
Nonlinear Systems
          Xiong Yang
          Derong Liu
          Qinglai Wei
          Ding Wang
    2.1 Introduction                               49 (4)
    2.2 Problem Statement and Preliminaries        53 (2)
      2.2.1 Dynamics of nonaffine nonlinear        53 (1)
      discrete-time systems
      2.2.2 A single-hidden layer neural network   54 (1)
    2.3 Controller Design via Reinforcement        55 (8)
    Learning
      2.3.1 A basic controller design approach     55 (5)
      2.3.2 Critic neural network and weight       60 (1)
      update law
      2.3.3 Action neural network and weight       61 (2)
      update law
    2.4 Stability Analysis and Performance of      63 (7)
    the Closed-Loop System
    2.5 Numerical Examples                         70 (6)
      2.5.1 Example 1                              70 (4)
      2.5.2 Example 2                              74 (2)
    2.6 Conclusions                                76 (7)
3 Experimental Studies on Data-Driven Heuristic    83 (24)
Dynamic Programming for POMDP
          Zhen Ni
          Haibo He
          Xiangnan Zhong
    3.1 Introduction                               83 (3)
    3.2 Markov Decision Process and Partially      86 (3)
    Observable Markov Decision Process
      3.2.1 Markov decision process                86 (2)
      3.2.2 Partially observable Markov            88 (1)
      decision process
    3.3 Problem Formulation with the State         89 (2)
    Estimator
    3.4 Data-Driven HDP Algorithm for POMDP        91 (3)
      3.4.1 Learning in the state estimator        92 (1)
      network
      3.4.2 Learning in the critic and the         93 (1)
      action network
    3.5 Simulation Study                           94 (6)
      3.5.1 Case study one                         95 (1)
      3.5.2 Case study two                         96 (2)
      3.5.3 Case study three                       98 (2)
    3.6 Conclusions and Discussion                 100(7)
4 Online Reinforcement Learning for                107(26)
Continuous-State Systems
          Yuanheng Zhu
          Dongbin Zhao
    4.1 Introduction                               107(2)
    4.2 Background of Reinforcement Learning       109(1)
    4.3 RLSPI Algorithm                            110(4)
      4.3.1 Policy iteration                       110(1)
      4.3.2 RLSPI                                  111(3)
    4.4 Examples of RLSPI                          114(6)
      4.4.1 Linear discrete-time system            114(4)
      4.4.2 Nonlinear discrete-time system         118(2)
    4.5 MSEC Algorithm                             120(4)
      4.5.1 State aggregation                      121(1)
      4.5.2 MSEC                                   121(3)
    4.6 Examples of MSEC                           124(5)
      4.6.1 Inverted pendulum                      125(1)
      4.6.2 Results of MSEC                        126(3)
    4.7 Conclusions                                129(4)
5 Adaptive Iterative Learning Control of Robot     133(18)
Manipulators in the Presence of Environmental
Constraints
          Xiongxiong He
          Zhenhua Qin
          Xianqing Wu
    5.1 Introduction                               133(2)
    5.2 Problem Statement and Preliminaries        135(5)
      5.2.1 Dynamics of constrained robot          135(5)
      systems
    5.3 Adaptive Iterative Learning Control        140(3)
    Design
      5.3.1 The dynamic model conversion and       140(2)
      assumption
      5.3.2 Adaptive iterative learning control    142(1)
      design
    5.4 Stability and Convergence Analysis of      143(2)
    the Closed-Loop System
    5.5 Numerical Examples                         145(4)
    5.6 Conclusions                                149(2)
6 Neural Network Control of Nonlinear              151(42)
Discrete-Time Systems in Affine Form in the
Presence of Communication Network
          Hao Xu
          Avimanyu Sahoo
          Sarangapani Jagannathan
    6.1 Introduction                               151(3)
    6.2 NNCS Background and Traditional Optimal    154(3)
    Control
      6.2.1 Nonlinear networked control systems    154(1)
      representation
      6.2.2 Traditional stochastic optimal         155(2)
      control
    6.3 Stochastic Optimal Controller Design       157(14)
    for NNCS
      6.3.1 Online NN-identifier design            157(3)
      6.3.2 Stochastic value function setup and    160(3)
      critic NN design
      6.3.3 Action NN estimation of optimal        163(1)
      control input
      6.3.4 Closed-loop stability                  164(2)
      6.3.5 Simulation results                     166(5)
    6.4 Extension to Infinite Horizon              171(7)
      6.4.1 Approximation of the optimal           171(4)
      stochastic value function and control
      policy using NN
      6.4.2 Simulation results                     175(3)
    6.5 Event-Triggered Control of NNCS            178(7)
      6.5.1 Event-triggered control design of      178(4)
      uncertain continuous time nonlinear system
      6.5.2 Closed-loop system stability and       182(2)
      event condition design
      6.5.3 Simulation results                     184(1)
    6.6 Conclusions                                185(1)
    6.7 Appendix                                   186(7)
      6.7.1 The proof of Theorem 6.3               186(1)
      6.7.2 The proof of Theorem 6.4               187(6)
7 Nonlinear and Robust Model Predictive Control    193(28)
of Systems with Unmodeled Dynamics Based on
Supervised Learning and Neurodynamic
Optimization
          Zheng Yan
          Jun Wang
    7.1 Introduction                               193(3)
    7.2 Problem Formulation                        196(7)
      7.2.1 Nominal stability                      197(1)
      7.2.2 Quadratic programming formulation      197(3)
      7.2.3 Minimax problem formulation            200(3)
    7.3 Neural Network Approaches                  203(3)
      7.3.1 Extreme learning machine               203(1)
      7.3.2 Simplified dual network                204(1)
      7.3.3 A two-layer recurrent neural network   205(1)
      7.3.4 Overall MPC approach                   205(1)
    7.4 Simulation Results                         206(9)
      7.4.1 Example 1                              206(5)
      7.4.2 Example 2                              211(4)
    7.5 Conclusions                                215(6)
8 Packet-Based Communication and Control           221(24)
Co-Design for Networked Control Systems
          Yun-Bo Zhao
          Guo-Ping Liu
    8.1 Introduction                               221(3)
    8.2 Packet-Based Transmission in Networked     224(2)
    Control Systems
    8.3 Packet-Based Control for Networked         226(4)
    Control Systems
      8.3.1 Packet-based control for NCSs: A       226(2)
      unified model
      8.3.2 Design of the packet-based control     228(2)
      scheme
    8.4 Stability of Packet-Based Networked        230(4)
    Control Systems
      8.4.1 A switched system theory approach      231(1)
      8.4.2 A delay dependent analysis approach    232(2)
    8.5 Packet-Based Controller Design: A          234(2)
    GPC-Based Approach
    8.6 Numerical and Experimental Examples        236(4)
      8.6.1 Numerical examples                     236(2)
      8.6.2 Experimental example                   238(2)
    8.7 Conclusions                                240(5)
9 Review of Some Approximate Privacy Measures      245(18)
of Multi-Agent Communication Protocols
          Bhaskar DasGupta
          Venkatakumar Srinivasan
    9.1 Introduction                               245(4)
      9.1.1 Perfect vs. approximately perfect      248(1)
      privacy
      9.1.2 Privacy analysis in other              248(1)
      environments
    9.2 Various Frameworks to Quantify Privacy     249(2)
    of Protocols
      9.2.1 Communication complexity based         249(1)
      approaches
      9.2.2 Information-theoretic approaches       249(1)
      9.2.3 Cryptographic approaches               250(1)
      9.2.4 Two-agent differential privacy         250(1)
      framework
    9.3 Benchmark Problems and Functions           251(1)
    9.4 Examples of Standard Communication         252(2)
    Protocols
    9.5 A Geometric Approach to Quantify Privacy   254(6)
      9.5.1 Tiling functions and dissection        258(2)
      protocols
      9.5.2 Generalization for d > 2 agents        260(1)
    9.6 Conclusions                                260(3)
10 Encoding-Decoding Machines for Online           263(20)
Concept-Drift Detection on Datastreams
          Cesare Alippi
          Giacomo Boracchi
          Li Bu
          Dongbin Zhao
    10.1 Introduction                              263(3)
    10.2 A CDT Based on the Encoding-Decoding      266(2)
    Machine
      10.2.1 The observation model                 266(1)
      10.2.2 The recurrent encoding-decoding       267(1)
      machine
      10.2.3 The encoding-decoding CDT             267(1)
    10.3 An Encoding-Decoding Machine Based on     268(3)
    SVD
      10.3.1 The SVD-based encoding-decoding       268(1)
      machine
      10.3.2 The residuals                         269(1)
      10.3.3 Learning M0                           270(1)
      10.3.4 Extensions                            271(1)
    10.4 An ICI-Based Encoding-Decoding CDT        271(3)
      10.4.1 Designing the encoding-decoding CDT   271(2)
      10.4.2 Adaptation                            273(1)
      10.4.3 Single vs. multiple sensors           274(1)
    10.5 Experiments                               274(6)
      10.5.1 The "ARMA" dataset                    276(1)
      10.5.2 The "hairdryer" application           277(1)
      10.5.3 The mountain temperature              277(3)
      application
    10.6 Conclusions                               280(3)
11 Recognizing sEMG Patterns for Interacting       283(26)
with Prosthetic Manipulation
          Zhaojie Ju
          Gaoxiang Ouyang
          Marzena Wilamowska-Korsak
          Honghai Liu
    11.1 Introduction                              283(3)
    11.2 Recurrence Plot and Quantification        286(2)
    Analysis
    11.3 Nonlinear Recognition Method              288(6)
      11.3.1 Gaussian mixture models               288(3)
      11.3.2 Fuzzy Gaussian mixture models         291(2)
      11.3.3 Recognizing sEMG signals using        293(1)
      FGMMs
    11.4 Experimental Results                      294(9)
      11.4.1 Data collection and description       294(2)
      11.4.2 Feature extraction and parameter      296(1)
      setting
      11.4.3 Recognition with one single feature   297(1)
      11.4.4 Recognition with multiple features    298(2)
      11.4.5 Recognition with different            300(3)
      classifiers
    11.5 Conclusions                               303(6)
12 Energy Demand Management Through Uncertain      309(26)
Data Forecasting: A Hybrid Approach
          Marco Severini
          Stefano Squartini
          Francesco Piazza
    12.1 Introduction                              309(2)
    12.2 Home Energy Management Problem: The       311(1)
    Model
    12.3 Modelling the Thermal Optimization        312(2)
    Sub-Problem
      12.3.1 Notations                             312(1)
      12.3.2 Heat pump constraints                 313(1)
    12.4 Neural Networks for Uncertain Data        314(2)
    Forecasting
    12.5 Optimization Algorithms                   316(1)
    12.6 Smart Home Energy Management: Case        317(14)
    Studies and Simulation Results
      12.6.1 Thermal model characterization        317(2)
      12.6.2 Task scheduling and energy cost       319(1)
      accounting
      12.6.3 Solar production                      320(1)
      12.6.4 Data forecasting                      320(1)
      12.6.5 Energy management performance         321(10)
    12.7 Conclusions                               331(4)
13 Many-Objective Evolutionary Algorithms and      335(30)
Hybrid Performance Metrics
          Zhenan He
          Gary G. Yen
    13.1 Introduction                              335(5)
    13.2 Literature Review on Performance          340(4)
    Metrics
      13.2.1 Metrics assessing the number of       340(1)
      Pareto optimal solutions in the set
      13.2.2 Metrics measuring the closeness of    341(1)
      the solutions to the true Pareto front
      13.2.3 Metrics focusing on distribution      342(1)
      of the solutions
      13.2.4 Metrics concerning spread of the      343(1)
      solutions
      13.2.5 Metrics considering both closeness    344(1)
      and diversity
    13.3 Literature Review on Many-Objective       344(2)
    Evolutionary Algorithms
    13.4 Performance Metrics Ensemble              346(6)
      13.4.1 The proposed framework                346(1)
      13.4.2 Double elimination tournament         347(5)
    13.5 Experimental Results                      352(8)
      13.5.1 Selected benchmark test problems      352(2)
      13.5.2 Selected performance metrics          354(1)
      13.5.3 Parameter setting in experiment       354(1)
      13.5.4 Experiment results                    354(4)
      13.5.5 Observations and insights             358(2)
    13.6 Conclusions                               360(5)
14 Synchronization Control of Memristive           365(20)
Chaotic Circuits and Their Applications in
Image Encryptions
          Shiping Wen
          Zhigang Zeng
    14.1 Introduction                              365(1)
    14.2 Synchronization of Memristive Chua's      366(9)
    Circuits
      14.2.1 Memristive Chua's circuits            367(1)
      14.2.2 Adaptive synchronization control      368(3)
      of memristive Chua's circuits
      14.2.3 Numerical simulations                 371(3)
      14.2.4 Conclusions                           374(1)
    14.3 Synchronization of Memristive Lorenz      375(10)
    Circuits
      14.3.1 Modeling and fuzzy synchronization    375(5)
      of memristive Lorenz circuits
      14.3.2 Synchronization of fuzzy              380(1)
      memristive Lorenz circuits with
      memristive Chua's circuits
      14.3.3 Simulation results                    381(2)
      14.3.4 Conclusions                           383(2)
15 Graph Embedded Total Margin Twin Support        385(22)
Vector Machine and Its Applications
          Xiaobo Chen
          Jian Yang
    15.1 Introduction                              385(3)
    15.2 A Brief Review on TSVM                    388(2)
    15.3 Graph Embedded Total Margin TSVM          390(6)
      15.3.1 Model formulation of GTM-TSVM         390(2)
      15.3.2 Algorithm derivation                  392(2)
      15.3.3 Weighting factors for GTM-TSVM        394(2)
    15.4 Experimental Results and Analysis         396(8)
      15.4.1 Experimental specification            396(1)
      15.4.2 A toy example                         397(1)
      15.4.3 Evaluations on UCI benchmark data     397(5)
      sets
      15.4.4 Experiments on USPS and MIT CBCL      402(2)
      database
    15.5 Conclusions                               404(3)
16 Regularized Covariance Matrix Estimation        407(24)
Based on MDL Principle
          Xiuling Zhou
          Ping Guo
          C.L. Philip Chen
    16.1 Introduction                              407(2)
    16.2 Theoretical Backgrounds                   409(5)
      16.2.1 Gaussian mixture model classifier     409(1)
      16.2.2 Classical discriminant analysis       410(2)
      16.2.3 KLIM method                           412(2)
    16.3 Covariance Matrix Estimation with         414(8)
    Multi-Regularization Parameters
      16.3.1 KLIM_L method with                    414(1)
      multi-regularization parameters
      16.3.2 Multi-regularization parameters       415(3)
      estimation
      16.3.3 Comparison of KLIM_L with             418(1)
      regularization methods
      16.3.4 Experiments and discussions           418(4)
    16.4 Covariance Matrix Estimation with         422(6)
    Variable Regularization Parameters
      16.4.1 Covariance matrix estimation with     422(1)
      variable regularization parameters
      16.4.2 Variable regularization matrix        423(2)
      estimation
      16.4.3 Comparisons                           425(1)
      16.4.4 Experiments and discussions           426(2)
    16.5 Conclusions                               428(3)
17 An Evolution of Evolutionary Algorithms with    431(26)
Big Data
          Weian Guo
          Lei Wang
          Qidi Wu
    17.1 Introduction                              431(3)
    17.2 Design of Hyper-Heuristic Framework       434(8)
    for Evolutionary Algorithms
      17.2.1 Genetic algorithm                     434(1)
      17.2.2 Particle swarm optimization           435(1)
      17.2.3 Biogeography-based optimization       435(3)
      17.2.4 Design of framework of                438(1)
      hyper-heuristic algorithm
      17.2.5 Simulations for the novel             439(3)
      framework of evolutionary algorithms
    17.3 Performances Analysis of Evolutionary     442(4)
    Algorithms for High-Dimensional Benchmarks
      17.3.1 Uniform blended migration operator    442(1)
      17.3.2 Heuristic migration operator          443(1)
      17.3.3 Extended migration operator           443(1)
      17.3.4 Numerical simulations for high        444(2)
      dimensional benchmarks
    17.4 Correlation Analysis for Business         446(8)
    Intelligence Based on Evolutionary
    Algorithms
      17.4.1 Correlation model                     451(1)
      17.4.2 Simulation for correlation analysis   452(2)
    17.5 Conclusions                               454(3)
Index                                              457

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上