新书报道
当前位置: 首页 >> 电类优秀教材 >> 正文
Recommender Systems
发布日期:2015-12-17  浏览

Recommender Systems

[Book Description]

Acclaimed by various content platforms (books, music, movies) and auction sites online, recommendation systems are key elements of digital strategies. If development was originally intended for the performance of information systems, the issues are now massively moved on logical optimization of the customer relationship, with the main objective to maximize potential sales. On the transdisciplinary approach, engines and recommender systems brings together contributions linking information science and communications, marketing, sociology, mathematics and computing. It deals with the understanding of the underlying models for recommender systems and describes their historical perspective. It also analyzes their development in the content offerings and assesses their impact on user behavior.

[Table of Contents]
Preface                                            xi
          Gerald Kembellec
          Ghislaine Chartron
          Imad Saleh
    Chapter 1 General Introduction To              1  (24)
    Recommender Systems
          Ghislaine Chartron
          Gerald Kembellec
      1.1 Putting it into perspective              1  (1)
      1.2 An interdisciplinary subject             2  (2)
      1.3 The fundamentals of algorithms           4  (7)
        1.3.1 Collaborative filtering              4  (3)
        1.3.2 Content filtering                    7  (2)
        1.3.3 Hybrid methods                       9  (2)
        1.3.4 Conclusion on historical             11 (1)
        recommendation models
      1.4 Content offers and recommender systems   11 (8)
        1.4.1 Culture and recommender systems      11 (5)
        1.4.2 Recommender systems and the          16 (2)
        e-commerce of content
        1.4.3 The behavior of users                18 (1)
      1.5 Current issues                           19 (1)
      1.6 Bibliography                             19 (6)
    Chapter 2 Understanding Users' Expectations    25 (28)
    For Recommender Systems: The Case Of Social
    Media
          Jean-Claude Domenget
          Alexandre Coutant
      2.1 Introduction: the omnipresence of        25 (2)
      recommender systems
      2.2 The social approach to prescription      27 (4)
        2.2.1 The theory of the prescription       27 (2)
        and online interactions
        2.2.2 Conditions for recognition of the    29 (1)
        prescription
        2.2.3 The specificities of social media    30 (1)
      2.3 Users who do not focus on the            31 (14)
      prescriptions of platforms
        2.3.1 Facebook: the link, the type of      32 (6)
        activity and the context
        2.3.2 Twitter: prescription between        38 (6)
        peers and explanation of prescription
        2.3.3 Conditions for the recognition of    44 (1)
        a prescription: announcement and
        enunciation
      2.4 A guide for considering recommender      45 (3)
      systems adapted to different forms of
      social media
      2.5 Conclusion                               48 (1)
      2.6 Bibliography                             49 (4)
    Chapter 3 Recommender Systems And Social       53 (18)
    Networks: What Are The Implications For
    Digital Marketing?
          Maria Mercanti-Guerin
      3.1 Social recommendations: an ancient       54 (4)
      practice revived by the digital age
        3.1.1 Recommendations: a difficult         55 (1)
        management for brands
        3.1.2 Internet recommendations: social     55 (3)
        presence and personalized
        recommendations
      3.2 Social recommendations: how are they     58 (8)
      used for e-commerce?
        3.2.1 Efficiency of recommender systems    58 (1)
        with regard to the performance of
        e-commerce websites
        3.2.2 Recommender systems used by          59 (7)
        social networks: from e-commerce to
        social commerce
      3.3 Conclusion                               66 (2)
      3.4 Bibliography                             68 (3)
    Chapter 4 Recommender Systems And              71 (22)
    Diversity: Taking Advantage Of The Long
    Tail And The Diversity Of Recommendation
    Lists
          Muriel Foulonneau
          Valentin Groues
          Yannick Naudet
          Max Chevalier
      4.1 The stakes associated with diversity     72 (5)
      within recommender systems
        4.1.1 Individual diversity or the          73 (1)
        individual perception of diversity
        4.1.2 The stakes and impacts of            74 (3)
        aggregate diversity
      4.2 Recommendation algorithms and            77 (8)
      diversity: trends, evaluation and
      optimization
        4.2.1 The tendency for recommendation      78 (2)
        algorithms to focus on the head
        4.2.2 The evaluation of diversity in       80 (1)
        recommender systems
        4.2.3 Recommendation algorithms which      81 (1)
        favor individual diversity
        4.2.4 Recommendation algorithms which      81 (1)
        favor aggregate diversity
        4.2.5 The shift toward user-centered       82 (3)
        diversity approaches
      4.3 Conclusion and new directions            85 (2)
      4.4 Bibliography                             87 (6)
    Chapter 5 Isontre: Intelligent Transformer     93 (26)
    Of Social Networks Into A Recommendation
    Engine Environment
          Rana Chamsi Abu Quba
          Salima Hassas
          Usama Fayyad
          Hammam Chamsi
          Christine Gertosio
      5.1 Summary                                  93 (1)
      5.2 Introduction                             94 (3)
      5.3 Latest developments, definition and      97 (4)
      history
        5.3.1 Collaborative filtering techniques   97 (1)
        5.3.2 General use social networks: what    97 (2)
        do they contain?
        5.3.3 Social recommendation                99 (1)
        5.3.4 The recommendation of concepts       100(1)
      5.4 iSoNTRE                                  101(9)
        5.4.1 iSoNTRE: transformer of social       102(5)
        networks
        5.4.2 iSoNTRE: the core of                 107(3)
        recommendation
      5.5 Experiments                              110(4)
        5.5.1 The preparation of data              110(1)
        5.5.2 Testing methodology                  110(1)
        5.5.3 The creation of avatars              111(1)
        5.5.4 Results                              112(1)
        5.5.5 Discussion                           113(1)
      5.6 Conclusion                               114(1)
      5.7 Bibliography                             115(4)
    Chapter 6 A Two-Level Recommendation           119(16)
    Approach For Document Search
          Manel Hmimida
          Rushed Kanawati
      6.1 Introduction                             119(1)
      6.2 Tag recommendation: a brief state of     120(2)
      the art
      6.3 The hypertagging system                  122(2)
        6.3.1 Metadata                             122(1)
        6.3.2 Architecture                         123(1)
      6.4 Recommendation approach                  124(3)
        6.4.1 Presentation                         124(2)
        6.4.2 Recommendation algorithm             126(1)
      6.5 Evaluation                               127(4)
        6.5.1 Generation of facets                 127(2)
        6.5.2 Generation of association rules      129(1)
        6.5.3 Evaluation of recommendation rules   130(1)
      6.6 Conclusion                               131(1)
      6.7 Bibliography                             132(3)
    Chapter 7 Combining Configuration And          135(22)
    Recommendation To Enable An Interactive
    Guidance Of Product Line Configuration
          Raouia Triki
          Raul Mazo
          Camille Salinesi
      7.1 Introduction                             135(2)
      7.2 Context                                  137(5)
        7.2.1 Configuration                        137(2)
        7.2.2 Recommendation                       139(2)
        7.2.3 Obstacles and challenges of          141(1)
        interactive PL configuration
      7.3 Overview of the proposed approach        142(6)
      7.4 Preliminary evaluation                   148(1)
      7.5 Discussion and related work              148(3)
        7.5.1 Recommendation techniques            148(3)
      7.6 Conclusion and future work               151(1)
      7.7 Bibliography                             151(6)
    Chapter 8 Semio-Cognitive Spaces: The          157(34)
    Frontier Of Recommender Systems
          Hakim Hachour
          Samuel Szoniecky
          Safia Abouad
      8.1 Introduction                             157(2)
      8.2 Latest developments: finalized           159(10)
      activities, recommender systems and the
      relevance of information
        8.2.1 Cognitive dynamics of finalized      159(2)
        activities
        8.2.2 The foundations of recommender       161(5)
        systems
        8.2.3 What information relevance?          166(3)
      8.3 Observable interests for decision        169(8)
      theory: a combination of content-based,
      collaboration-based and knowledge-based
      recommendations
        8.3.1 Methodology: meta-analysis and       169(2)
        modeling of the process
        8.3.2 Analysis and modeling of a           171(2)
        macro-process for responding to a call
        for R&D projects
        8.3.3 Analysis and model of a              173(4)
        socio-organizational tool for the
        management of customer complaints
      8.4 Discussion and conclusions               177(4)
        8.4.1 Discussion: the performance of       177(4)
        the filtering methods and
        semio-cognitive criteria for relevance
      8.5 Conclusions: recommender systems         181(4)
      linked to finalized activities
        8.5.1 The localization of activities       182(1)
        and geographical information systems: a
        new kind of data
        8.5.2 Transparency of the use of           183(2)
        personal data, data protection and
        ownership
      8.6 Acknowledgments                          185(1)
      8.7 Bibliography                             185(6)
    Chapter 9 The French-Speaking Literary         191(22)
    Prescription Market In Networks
          Louis Wiart
      9.1 Introduction                             191(2)
      9.2 The economy of prescription              193(3)
        9.2.1 The notion of prescription           193(1)
        9.2.2 From the advisors market to the      194(2)
        prescription market
      9.3 Methodology                              196(1)
      9.4 The competitive structure of the         197(7)
      market of online social networks of
      readers
        9.4.1 Pure player networks and the         199(2)
        audience strategy
        9.4.2 Amateur networks and the survival    201(1)
        strategy
        9.4.3 Backed networks and the              202(2)
        hybridization strategy
      9.5 The organization of prescription         204(4)
        9.5.1 Social prescription                  205(1)
        9.5.2 Editorial prescription               206(1)
        9.5.3 Algorithmic prescription             207(1)
      9.6 Conclusion: what legitimacy for          208(2)
      literary prescription?
      9.7 Appendix: list of interviews             210(1)
      undertaken
      9.8 Bibliography                             210(3)
    Chapter 10 Presentation Of Offered             213(8)
    Services: Babelio, A Recommendation Engine
    Dedicated To Books
          Vassil Stefanov
          Guillaume Teisseire
          Pierre Fremaux
      10.1 Introduction                            213(3)
      10.2 The problem of qualitative pertinence   216(1)
      10.3 The problem of quantitative             217(1)
      pertinence
      10.4 Balancing recall and precision          217(1)
      10.5 The issue of sparse data                218(1)
      10.6 Performance and scalability             218(1)
      10.7 A few issues specific to books          219(2)
    Chapter 11 Presentation Of The Offer Of        221(6)
    Services: Nomao, Recommender Systems And
    Information Search
          Estelle Delpech
          Laurent Candillier
          Etienne Chai
      11.1 Introduction: the actors of Internet    221(1)
      recommendation
      11.2 Approaches to recommendation            222(1)
      11.3 Nomao: a local outlets search and       223(2)
      recommendation engine
        11.3.1 Popularity score                    223(1)
        11.3.2 Affinity score                      224(1)
        11.3.3 Social recommendation               225(1)
      11.4 Prospects: the move toward              225(1)
      interactive recommender systems
      11.5 Appendix                                226(1)
List Of Authors                                    227(4)
Index                                              231
 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上