新书报道
当前位置: 首页 >> 电类优秀教材 >> 正文
Micro & Nano-Engineering of Fuel Cells
发布日期:2015-12-17  浏览

Micro & Nano-Engineering of Fuel Cells

 

[Book Description]

 

Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort to the development and commercialization of fuel cells important for our daily lives. However, abundant issues, ranging from mechanistic study to system integration, still need to be figured out before massive applications can be used. Miniaturization is one of the main bottlenecks for the advancement and further development of fuel cells. Thus, research on miniaturization of fuel cells as well as understanding the micro and nano structural effect on fuel cell performance are necessary and of great interest to solve the challenges ahead. In this book, internationally acclaimed experts illustrate how micro & nano engineering technology can be applied as a way of removing the restrictions presently faced by fuel cells both technically and theoretically.Through the twelve well designed chapters, major issues related to the miniaturization of different types of fuel cells are addressed. Theory focusing on micro and nano scale mechanics are outlined to better optimize the performance of fuel cells from laboratory scale to industrial scale. This book will be a good reference to those scientists and researchers interested in developing fuel cells through micro and nano scale engineering.

 
 
[Table of Contents]
 
About the book series                              vii
Editorial board                                    ix
List of contributors                               xxvii
Preface                                            xxix
About the editors                                  xxxiii
1 Pore-scale water transport investigation for     1     (36)
polymer electrolyte membrane (PEM) fuel cells
          Takemi Chikahisa
          Yutaka Tabe
    1.1 Introduction                               1     (1)
    1.2 Basics of cell performance and water       1     (3)
    management
    1.3 Water transport in the cell channels       4     (7)
      1.3.1 Channel types                          4     (1)
      1.3.2 Observation of water production,       5     (4)
      temperatures, and current density
      distributions
      1.3.3 Characteristics of porous separators   9     (2)
    1.4 Water transport in gas diffusion layers    11    (5)
      1.4.1 Water transport with different         12    (2)
      anisotropic fiber directions of the GDL
      1.4.2 Water transport simulation in GDLs     14    (2)
      with different wettability gradients
    1.5 Water transport through micro-porous       16    (6)
    layers (MPL)
      1.5.1 Effect of the MPL on the cell          16    (2)
      performance
      1.5.2 Observation of the water               18    (2)
      distribution in the cell
      1.5.3 Analysis of water transport through    20    (1)
      MPL
      1.5.4 Mechanism for improving cell           21    (1)
      performance with an MPL
    1.6 Transport phenomena and reactions in       22    (6)
    the catalyst layers
      1.6.1 Introduction                           22    (1)
      1.6.2 Analysis model and formulation         23    (2)
      1.6.3 Results of analysis and major          25    (3)
      parameters in CL affecting performance
    1.7 Water transport in cold starts             28    (5)
      1.7.1 Cold start characteristics and the     28    (2)
      effect of the start-up temperature
      1.7.2 Observation of ice distribution and    30    (1)
      evaluation of the freezing mechanism
      1.7.3 Strategies to improve cold start       31    (2)
      performance
    1.8 Summary                                    33    (4)
2 Reconstruction of PEM fuel cell electrodes       37    (32)
with micro- and nano-structures
          Ulises Cano-Castillo
          Romeli Barbosa-Pool
    2.1 Introduction                               37    (2)
      2.1.1 The technology: complex operational    37    (2)
      features required
        2.1.1.1 Nano-technology to the rescue?     38    (1)
        2.1.1.2 Challenges: technical and          39    (1)
        economic goals still remain
    2.2 Catalyst layers' structure: a reason to    39    (21)
    reconstruct
      2.2.1 Heterogeneous materials                40    (1)
      2.2.2 First steps for the reconstruction     40    (3)
      of catalyst layers
        2.2.2.1 Structural features matter         41    (1)
        2.2.2.2 Scaling - a matter of              42    (1)
        perspectives
      2.2.3 Stochastic reconstruction - scaling    43    (2)
      method
        2.2.3.1 Statistical signatures             44    (1)
      2.2.4 Let's reconstruct                      45    (8)
        2.2.4.1 Features of reconstructed          47    (2)
        structures
        2.2.4.2 Effective ohmic conductivity       49    (1)
        2.2.4.3 CL voltage distribution,           50    (3)
        electric and ionic transport
        coefficients
      2.2.5 Structural reconstruction:             53    (7)
      annealing route
        2.2.5.1 Image processing for               54    (1)
        statistical realistic information
        2.2.5.2 Structural reconstruction -        55    (2)
        annealing method
        2.2.5.3 Statistical functions - two        57    (2)
        scales
        2.2.5.4 Effective electric resistivity     59    (1)
        simulation from a reconstructed
        structure
    2.3 New material support and new catalyst      60    (4)
    approaches
      2.3.1 Carbon nanotubes "decorated" with      60    (4)
      platinum
        2.3.1.1 Substantial differences for CNT    60    (3)
        structures
        2.3.1.2 CNT considerations when            63    (1)
        inputting component properties
      2.3.2 Core-shell-based catalyzers            64    (5)
        2.3.2.1 General considerations for         64    (1)
        reconstruction
    2.4 Concluding remarks                         64    (5)
3 Multi-scale model techniques for PEMFC           69    (26)
catalyst layers
          Yu Xiao
          Jinliang Yuan
          Ming Hou
    3.1 Introduction                               69    (1)
      3.1.1 Physical and chemical processes at     69    (1)
      different length and time scales
      3.1.2 Needs for multi-scale study in         69    (1)
      PEMFCs
    3.2 Models and simulation methods at           70    (6)
    different scales
      3.2.1 Atomistic scale models at the          70    (2)
      catalyst surface
        3.2.1.1 Dissociation and adsorption        71    (1)
        processes on the Pt surface
        3.2.1.2 Reaction thermodynamics            71    (1)
      3.2.2 Modeling methods at                    72    (2)
      nano-/micro-scales
        3.2.2.1 Molecular dynamics modeling        73    (1)
        method
        3.2.2.2 Monte Carlo methods                74    (1)
      3.2.3 Models at meso-scales                  74    (2)
        3.2.3.1 Dissipative particle dynamics      74    (1)
        (DPD)
        3.2.3.2 Lattice Boltzmann method (LBM)     75    (1)
        3.2.3.3 Smoothed particle hydrodynamics    75    (1)
        (SPH) method
      3.2.4 Simulation methods at macro-scales     76    (1)
    3.3 Multi-scale model integration technique    76    (12)
      3.3.1 Integration methods on atomistical     76    (3)
      scale to nano-scale
      3.3.2 Microscopic CL structure simulation    79    (1)
      3.3.3 Analyses of predicted CLs              79    (3)
      microscopic structures
        3.3.3.1 Microscopic parameters             79    (2)
        evaluation
        3.3.3.2 Primary pore structure analysis    81    (1)
      3.3.4 Model validation                       82    (5)
        3.3.4.1 Pore size distribution             82    (1)
        3.3.4.2 Pt particle size distribution      83    (1)
        3.3.4.3 The average active Pt surface      84    (3)
        areas
      3.3.5 Coupling electrochemical reactions     87    (1)
      in CLs
    3.4 Challenges in multi-scale modeling for     88    (1)
    PEMFC CLs
      3.4.1 The length scales                      88    (1)
      3.4.2 The time scales                        88    (1)
      3.4.3 The integration algorithms             88    (1)
    3.5 Conclusions                                89    (6)
4 Fabrication of electro-catalytic                 95    (36)
nano-particles and applications to proton
exchange membrane fuel cells
          Maria Victoria Martinez Huerta
          Gonzalo Garcia
    4.1 Introduction                               95    (1)
    4.2 Overview of the electro-catalytic          96    (4)
    reactions
      4.2.1 Hydrogen oxidation reaction            96    (1)
      4.2.2 H2/CO oxidation reaction               96    (2)
      4.2.3 Methanol oxidation reaction            98    (1)
      4.2.4 Oxygen reduction reaction              99    (1)
    4.3 Novel nano-structures of platinum          100   (5)
      4.3.1 State-of-the-art supported Pt          100   (1)
      catalysts
      4.3.2 Surface structure of Pt catalysts      101   (1)
      4.3.3 Synthesis and performance of Pt        101   (4)
      catalysts
    4.4 Binary and ternary platinum-based          105   (7)
    catalysts
      4.4.1 Electro-catalysts for CO and           105   (3)
      methanol oxidation reactions
      4.4.2 Electro-catalysts for the oxygen       108   (1)
      reduction reaction
      4.4.3 Synthetic methods of binary/ternary    109   (3)
      catalysts
    4.5 New electro-catalyst supports              112   (3)
    4.6 Conclusions                                115   (16)
5 Ordered mesoporous carbon-supported              131   (28)
nano-platinum catalysts: application in direct
methanol fuel cells
          Parasuraman Selvam
          Balaiah Kuppan
    5.1 Introduction                               131   (1)
    5.2 Ordered mesoporous silicas                 132   (3)
    5.3 Ordered mesoporous carbons                 135   (5)
      5.3.1 Hard-template approach                 137   (2)
      5.3.2 Soft-template approach                 139   (1)
    5.4 Direct methanol fuel cell                  140   (4)
    5.5 Electrocatalysts for DMFC                  144   (1)
      5.5.1 Bulk platinum catalyst                 144   (1)
      5.5.2 Platinum alloy catalyst                145   (1)
      5.5.3 Nano-platinum catalyst                 145   (1)
      5.5.4 Catalyst promoters                     145   (1)
    5.6 OMC-supported platinum catalyst            145   (8)
      5.6.1 Pt/NCCR-41                             147   (3)
      5.6.2 Pt/CMK-3                               150   (3)
    5.7 Summary and conclusion                     153   (6)
6 Modeling the coupled transport and reaction      159   (22)
processes in a micro-solid-oxide fuel cell
          Meng Ni
    6.1 Introduction                               159   (1)
    6.2 Model development                          160   (5)
      6.2.1 Computational fluid dynamic (CFD)      161   (2)
      model
      6.2.2 Electrochemical model                  163   (1)
      6.2.3 Chemical model                         164   (1)
    6.3 Numerical methodologies                    165   (2)
    6.4 Results and discussion                     167   (9)
      6.4.1 Base case                              167   (4)
      6.4.2 Temperature effect                     171   (1)
      6.4.3 Operating potential effect             172   (4)
      6.4.4 Effect of electrochemical oxidation    176   (1)
      rate of CO
    6.5 Conclusions                                176   (5)
7 Nano-structural effect on SOFC durability        181   (30)
          Yao Wang
          Changrong Xia
    7.1 Introduction                               181   (1)
    7.2 Aging mechanism of SOFC electrodes         181   (7)
      7.2.1 Aging mechanism of the anodes          181   (5)
        7.2.1.1 Grain coarsening                   182   (3)
        7.2.1.2 Redox cycling                      185   (1)
        7.2.1.3 Coking and sulfur poison           185   (1)
      7.2.2 Aging mechanism of cathodes            186   (2)
    7.3 Stability of nano-structured electrodes    188   (4)
      7.3.1 Fabrication and electrochemical        188   (1)
      properties of nano-structured electrodes
      7.3.2 Models about nano-structured           188   (4)
      effects on stability
        7.3.2.1 Nano-size effects on isothermal    190   (1)
        grain growth
        7.3.2.2 Nano-structured effects on         190   (2)
        durability against thermal cycle
    7.4 Long-term performance of                   192   (12)
    nano-structured electrodes
      7.4.1 Anodes                                 192   (7)
        7.4.1.1 Enhanced interfacial               192   (3)
        stabilities of nano-structured anodes
        7.4.1.2 Durability of nano-structured      195   (1)
        anodes against redox cycle
        7.4.1.3 Durability of nano-structured      196   (3)
        anodes against coking and sulfur
        poisoning
      7.4.2 Cathodes                               199   (13)
        7.4.2.1 LSM                                199   (1)
        7.4.2.2 LSC                                200   (2)
        7.4.2.3 LSCF                               202   (1)
        7.4.2.4 SSC                                203   (1)
    7.5 Summary                                    204   (7)
8 Micro- and nano-technologies for microbial       211   (16)
fuel cells
          Hao Ren
          Junseok Chae
    8.1 Introduction                               211   (1)
    8.2 Electricity generation fundamental         212   (5)
      8.2.1 Electron transfer of exoelectrogens    212   (1)
      8.2.2 Voltage generation                     213   (1)
      8.2.3 Parameter for MFC characterization     214   (6)
        8.2.3.1 Open circuit voltage (Eocv)        214   (1)
        8.2.3.2 Areal/volumetric current           214   (1)
        density (i.-max,areal, imax,volumetric)
        and areal/volumetric power density
        (.Pmax,areal, Pmax,volumetnc)
        8.2.3.3 Internal resistance (Ri) and       214   (1)
        areal resistivity (r;)
        8.2.3.4 Efficiency - Coulombic             215   (1)
        efficiency (CE) and energy conversion
        efficiency (EE)
        8.2.3.4.1 Coulombic efficiency (CE)        215   (1)
        8.2.3.4.2 Energy conversion efficiency     216   (1)
        (EE)
        8.2.3.5 Biofilm morphology                 216   (1)
    8.3 Prior art of miniaturized MFCs             217   (3)
    8.4 Promises and future work of                220   (4)
    miniaturized MFCs
      8.4.1 Promises                               220   (2)
      8.4.2 Future work                            222   (6)
        8.4.2.1 Further enhancing current and      222   (1)
        power density
        8.4.2.2 Applying air-cathodes to           223   (1)
        replace potassium ferricyanide
        8.4.2.3 Reducing the cost of MFCs          224   (1)
    8.5 Conclusion                                 224   (3)
9 Microbial fuel cells: the microbes and           227   (18)
materials
          Keaton L. Lesnik
          Hong Liu
    9.1 Introduction                               227   (1)
    9.2 How microbial fuel cells work              227   (1)
    9.3 Understanding exoelectrogens               228   (3)
      9.3.1 Origins of microbe-electrode           228   (1)
      interactions
      9.3.2 Extracellular electron transfer        229   (2)
      (EET) mechanisms
        9.3.2.1 Redox shuttles/mediators           229   (1)
        9.3.2.2 c-type cytochromes                 230   (1)
        9.3.2.3 Conductive pill                    231   (1)
      9.3.3 Interactions and implications          231   (1)
    9.4 Anode materials and modifications          231   (3)
      9.4.1 Carbon-based anode materials           232   (1)
      9.4.2 Anode modifications                    233   (1)
    9.5 Cathode materials and catalysts            234   (2)
      9.5.1 Cathode construction                   234   (1)
      9.5.2 Catalysts                              235   (1)
      9.5.3 Cathode modifications                  235   (1)
      9.5.4 Biocathodes                            236   (1)
    9.6 Membranes/separators                       236   (2)
    9.7 Summary                                    238   (1)
    9.8 Outlook                                    238   (7)
10 Modeling and analysis of miniaturized           245   (12)
packed-bed reactors for mobile devices powered
by fuel cells
          Srinivas Palanki
          Nicholas D. Sylvester
    10.1 Introduction                              245   (1)
    10.2 Reactor and fuel cell modeling            245   (2)
      10.2.1 Design equations of the reactor       245(1)
      10.2.2 Design equations for the fuel cell    246   (1)
      stack
    10.3 Applications                              247   (8)
      10.3.1 Methanol-based system                 247   (5)
      10.3.2 Ammonia-based system                  252   (3)
    10.4 Conclusions                               255   (2)
11 Photocatalytic fuel cells                       257   (18)
          Michael K.H. Leung
          Bin Wang
          Li Li
          Yiyi She
    11.1 Introduction                              257   (1)
    11.2 PFC concept                               257   (1)
      11.2.1 Fuel cell                             257   (1)
      11.2.2 Photocatalysis                        257   (1)
      11.2.3 Photocatalytic fuel cell              258   (1)
    11.3 PFC architecture and mechanisms           258   (5)
      11.3.1 Cell configurations                   258   (1)
      11.3.2 Bifunctional photoanode               258   (4)
        11.3.2.1 Photocatalyst                     258   (2)
        11.3.2.2 Substrate materials               260   (1)
        11.3.2.3 Catalyst deposition methods       261   (1)
      11.3.3 Cathode                               262   (1)
    11.4 Electrochemical kinetics                  263   (7)
      11.4.1 Current-voltage characteristics       263   (6)
        11.4.1.1 Ideal thermodynamically           265   (1)
        predicted voltage
        11.4.1.2 Activation losses                 265   (1)
        11.4.1.3 Ohmic losses                      266   (1)
        11.4.1.4 Concentration losses              267   (2)
      11.4.2 Efficiency of a photocatalytic        269   (1)
      fuel cell
        11.4.2.1 Pseudo-photovoltaic efficiency    269   (1)
        11.4.2.2 External quantum efficiency       269   (1)
        11.4.2.3 Internal quantum efficiency       269   (1)
        11.4.2.4 Current doubling effect           269   (1)
    11.5 PFC applications                          270   (1)
      11.5.1 Wastewater problems                   270   (1)
      11.5.2 Practical micro-fluidic               270   (1)
      photocatalytic fuel cell (MPFC)
      applications
    11.6 Conclusion                                270   (5)
12 Transport phenomena and reactions in            275   (24)
micro-fluidic aluminum-air fuel cells
          Huizhi Wang
          Dennis Y.C. Leung
          Kwong-Yu Chan
          Jin Xuan
          Hao Zhang
    12.1 Introduction                              275   (1)
    12.2 Mathematical model                        276   (6)
      12.2.1 Problem description                   276   (1)
      12.2.2 Cell hydrodynamics                    277   (1)
      12.2.3 Charge conservation                   278   (1)
      12.2.4 Ionic species transport               279   (1)
      12.2.5 Electrode kinetics                    280   (2)
        12.2.5.1 Anode kinetics                    280   (1)
        12.2.5.2 Cathode kinetics                  280   (2)
        12.2.5.3 Expression of overpotentials      282   (1)
      12.2.6 Boundary conditions                   282   (1)
    12.3 Numerical procedures                      282   (1)
    12.4 Results and discussion                    283   (10)
      12.4.1 Model validation                      283   (1)
      12.4.2 Hydrogen distribution                 284   (3)
      12.4.3 Velocity distribution                 287   (1)
      12.4.4 Species distribution                  287   (3)
        12.4.4.1 Single-phase flow                 287   (1)
        12.4.4.1.1 Ionic species concentration     287   (1)
        distributions
        12.4.4.1.2 Migration contribution to       288   (1)
        transverse species transport
        12.4.4.2 The effect of bubbles             289   (1)
      12.4.5 Current density and potential         290   (3)
      distributions
    12.5 Conclusions                               293   (6)
Subject Index                                      299   (4)
Book Series Page                                   303
 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上