
Materials Challenges : Inorganic Photovoltaic Solar Energy
[BOOK DESCRIPTION]
This authoritative reference covers the various aspects of materials science that will impact on the next generation of photovoltaic (PV) module technology. The emphasis on materials brings a fresh perspective to the literature and highlights crucial issues. Special attention is given to thin film PV materials, an area that is growing more rapidly than crystalline silicon and could dominate in the long term. The book addresses the fundamental aspects of PV solar cell materials and gives a comprehensive description of each major thin film material, either in research or production. Particular weight is given to the key materials drivers of solar conversion efficiency, long term stability, materials costs, and materials sustainability.
[TABLE OF CONTENTS]
Chapter 1 Introduction and Techno-economic 1 (26)
Background
Stuart J.C. Irvine
Chiara Candelise
1.1 Potential for PV Energy Generation as 1 (2)
Part of a Renewable Energy Mix
1.2 Historical Development of Thin Film PV 3 (3)
1.3 The Role of Inorganic Thin Film PV in 6 (2)
the Mix of PV Technologies
1.4 Costs of Photovoltaics and Recent PV 8 (5)
Industry Developments
1.5 Role of Materials Cost and Efficiency 13 (6)
in Cost of Thin Film PV
1.6 Future Prospects for Cost Reduction and 19 (1)
Thin Film PV
1.7 Outline of Book and Context of Topics 20 (2)
in Terms of Techno-economic Background
References 22 (5)
Chapter 2 Fundamentals of Thin Film PV Cells 27 (26)
Stuart J.C. Irvine
Vincent Barrioz
2.1 Introduction 27 (3)
2.1.1 The Sun and Solar Energy 28 (1)
2.1.2 History of Exploiting Solar 29 (1)
Electricity
2.2 Fundamentals of PV Materials 30 (7)
2.2.1 Electrical Properties of Inorganic 30 (1)
Materials
2.2.2 Doping of Semiconductors 31 (1)
2.2.3 Band Structure of Solar Absorbers 32 (5)
2.3 The pn Junction 37 (9)
2.3.1 Fundamentals of Absorption of Solar 39 (1)
Radiation in a pn Device
2.3.2 Electrical Behaviour of a PV Solar 40 (2)
Cell
2.3.3 Shockley-Queisser Limit 42 (2)
2.3.4 3-G Solar Cells to Beat the Single 44 (2)
Junction Limit
2.4 Defects in Thin Film PV Materials 46 (4)
2.4.1 Staebler-Wronski Effect 47 (1)
2.4.2 Minority Carrier Lifetime and 47 (3)
Junction Defects
2.4.3 Lateral Non-uniformity of Thin Film 50 (1)
PV Devices
2.5 Conclusions 50 (1)
Acknowledgements 51 (1)
References 51 (2)
Chapter 3 Crystalline Silicon Thin Film and 53 (36)
Nanowire Solar Cells
Hari S. Reehal
Jeremy Ball
3.1 Introduction 53 (1)
3.2 Planar Thin Film Crystalline Silicon 54 (15)
Technology
3.2.1 Crystallisation of Amorphous Silicon 54 (3)
3.2.2 Seed Layer Approaches 57 (7)
3.2.3 Lift-Off and Epitaxy Approaches 64 (2)
3.2.4 Plasmonic Enhancement in Thin 66 (3)
Crystalline Silicon Cells
3.3 Silicon Nanowire Solar Cells 69 (12)
3.3.1 SiNW Growth using the 70 (6)
Vapour-Liquid-Solid Method
3.3.2 Etched SiNWs and Solar Cells 76 (5)
3.4 Conclusions 81 (1)
References 82 (7)
Chapter 4 A Review of NREL Research into 89 (46)
Transparent Conducting Oxides
Timothy J. Coutts
James M. Burst
Joel N. Duenow
Xiaonan Li
Timothy A. Gessert
4.1 Introduction 89 (2)
4.2 Practical Challenges Facing TCOs 91 (2)
4.2.1 Elemental Abundance and Cost 91 (1)
4.2.2 Toxicity 91 (1)
4.2.3 Ease of Deposition 92 (1)
4.2.4 Stability 92 (1)
4.2.5 Contacting 92 (1)
4.3 Background Science 93 (2)
4.3.1 The Transmission Window 93 (2)
4.4 Binary Compounds 95 (20)
4.4.1 ZnO 95 (6)
4.4.2 In2O3-Based TCOs 101(5)
4.4.3 SnO2 106(7)
4.4.4 CdO 113(2)
4.5 Ternary Compounds and Alloys 115(12)
4.5.1 Cadmium Stannate 115(7)
4.5.2 Zinc Stannate 122(2)
4.5.3 ZnxMg1-xO 124(3)
4.6 Summary 127(1)
Acknowledgements 128(1)
References 129(6)
Chapter 5 Thin Film Cadmium Telluride Solar 135(25)
Cells
Andrew J. Clayton
Vincent Barrioz
5.1 Introduction 135(2)
5.2 CdS n-type Window Layer 137(2)
5.2.1 Doped CdS 138(1)
5.2.2 High Resistive Transparent Layer 138(1)
5.2.3 Wide Bandgap Cdi1-xZnxS Alloy 138(1)
Window Layer
5.3 CdTe p-type Absorber Layer 139(2)
5.3.1 Doping CdTe 140(1)
5.4 CdCl2 Activation Treatment 141(3)
5.4.1 Recrystallisation of CdTe Grains 142(1)
5.4.2 Inter-diffusion at the CdS-CdTe 142(1)
Interface
5.4.3 Passivation of Grain Boundary 143(1)
Defects within CdTe
5.5 Back Contact Formation 144(3)
5.5.1 CuxTe 145(1)
5.5.2 ZnTe:Cu 145(1)
5.5.3 Ni-P 146(1)
5.5.4 Sb2Te3 146(1)
5.5.5 CdTe:As+ 146(1)
5.6 MOCVD CdTe Cells 147(5)
5.6.1 MOCVD Cd1-xZnxS vs. CdS Window Layer 147(2)
5.6.2 MOCVD CdTe:As Absorber and Contact 149(3)
Layer
5.7 Prospects for Large-scale Manufacture 152(2)
using MOCVD
5.8 Conclusions 154(1)
References 155(5)
Chapter 6 New Chalcogenide Materials for Thin 160(49)
Film Solar Cells
David W. Lane
Kyle J. Hutchings
Robert McCracken
Ian Forbes
6.1 Introduction and Background 160(8)
6.2 Investigating New Materials 168(15)
6.2.1 Conventional versus High Throughput 168(1)
Techniques
6.2.2 One- and Two-dimensional Libraries 169(4)
6.2.3 Mapping Libraries 173(8)
6.2.4 Device Libraries 181(2)
6.3 CZTS and Cu2ZnSnS4 183(7)
6.3.1 Growth of CZTS 184(1)
6.3.2 CZTS Device Structures and 185(2)
Efficiencies
6.3.3 Composition and Formation of CZTS 187(3)
6.4 Sulfosalts 190(12)
6.4.1 Cu-Sb-(S,Se) 193(3)
6.4.2 Cu-Bi-S 196(2)
6.4.3 Sn-Sb-S 198(4)
6.5 Conclusions 202(1)
References 203(6)
Chapter 7 III-V Solar Cells 209(38)
James P. Connolly
Denis Mencaraglia
7.1 Introduction 209(1)
7.2 Materials and Growth 210(5)
7.2.1 The III-V Semiconductors 210(3)
7.2.2 Growth Methods 213(1)
7.2.3 Heterogeneous Growth 214(1)
7.3 Design Concepts 215(12)
7.3.1 Light and Heat 216(1)
7.3.2 Charge Neutral Layers 217(2)
7.3.3 Space Charge Region 219(1)
7.3.4 Radiative Losses 219(2)
7.3.5 Resulting Analytical Model 221(2)
7.3.6 Single Junction Analyses 223(4)
7.3.7 Conclusions 227(1)
7.4 Multi-junction Solutions 227(13)
7.4.1 Theoretical Limits 227(2)
7.4.2 Material Limitations 229(3)
7.4.3 A Tandem Junction Example 232(3)
7.4.4 Record Efficiency Triple Junction 235(4)
7.4.5 Conclusions 239(1)
7.5 Remarks on Nanostructures 240(2)
7.6 Conclusions 242(1)
References 243(4)
Chapter 8 Light Capture 247(50)
Stuart A. Boden
Tristan L. Temple
8.1 Introduction 247(1)
8.2 The Need for Antireflection 248(1)
8.3 The Need for Light Trapping 249(1)
8.4 Mechanisms 250(3)
8.4.1 Antireflection 250(1)
8.4.2 Light Trapping 251(2)
8.5 Thin Film Antireflection Coatings 253(5)
8.5.1 Optical Considerations 253(4)
8.5.2 Surface Passivation 257(1)
8.5.3 Other Thin Film Considerations 257(1)
8.6 Micron-scale Texturing 258(6)
8.6.1 Alkali Etching: Pyramids and Grooves 258(2)
8.6.2 Acid Etching 260(2)
8.6.3 Dry Etching 262(1)
8.6.4 Ablation Techniques 263(1)
8.7 Submicron Texturing 264(9)
8.7.1 Subwavelength Array Theory 265(2)
8.7.2 Subwavelength Texturing Practical 267(6)
Realization
8.8 Metal Nanoparticle Techniques 273(11)
8.8.1 Optical Properties of Metal 273(7)
Nanoparticles
8.8.2 Fabrication of Metal Nanoparticles 280(3)
8.8.3 Integration of Metal Nanoparticles 283(1)
into Silicon Solar Cells
8.9 Summary 284(1)
References 285(12)
Chapter 9 Photon Frequency Management Materials 297(35)
for Efficient Solar Energy Collection
Lefteris Danos
Thomas J.J. Meyer
Pattareeya Kittidachachan
Liping Fang
Thomas S. Parel
Nazila Soleimani
Tomas Markvart
9.1 Introduction 297(2)
9.2 Fundamentals 299(4)
9.2.1 Introduction 299(1)
9.2.2 Re-absorption 299(3)
9.2.3 Photon Balance in the Collector 302(1)
9.3 Forster Resonance Energy Transfer 303(8)
9.3.1 Introduction 303(1)
9.3.2 Basic Theory 304(2)
9.3.3 Materials for Improved Photon 306(1)
Energy Collection
9.3.4 Estimation of Quantum Yield 306(2)
9.3.5 Examples of Energy Transfer for 308(3)
Efficient Photon Management
9.4 Luminescent Solar Collectors 311(8)
9.4.1 Introduction 311(3)
9.4.2 Spectroscopic Characterisation of 314(2)
LSCs
9.4.3 LSC Examples 316(3)
9.5 Luminescence Down-Shifting (LDS) 319(4)
9.5.1 Introduction 319(2)
9.5.2 LDS Examples 321(2)
9.6 Advanced Photonic Concepts 323(4)
9.7 Conclusions 327(1)
Acknowledgements 327(1)
References 328(4)
Subject Index 332