Reinforced and Prestressed Concrete remains the most comprehensive text for engineering students and instructors as well as practising engineers. This second edition has been updated to reflect recent amendments to the Australian Standard for Concrete Structures AS3600-2009. The content is presented in a clear, easy-to-follow manner and this edition features even more illustrative and design examples to aid comprehension of complex concepts. Part I addresses the analysis and design of reinforced concrete structures; Part II covers topics on prestressed concrete. Additional technical and practical information is set out in four appendices. Each chapter includes a set of problems that consolidates what students have learnt. Worked solutions to the problems are available to instructors on the companion website at www.cambridge.edu.au/academic. Thorough in its treatment, with many practical formulas, diagrams and tables, this book is an indispensable resource for students and engineers in their continuing learning and professional education.
Preface to the first edition xvii
Preface to the second edition xx
Acknowledgements xxi
Notation xxii
Acronyms and abbreviations xxxv
Part 1 Reinforced concrete 1 (374)
1 Introduction 3 (10)
1.1 Historical notes 3 (1)
1.2 Design requirements 4 (1)
1.3 Loads and load combinations 5 (2)
1.3.1 Strength design 5 (1)
1.3.2 Serviceability design 6 (1)
1.3.3 Application 7 (1)
1.4 Concrete cover and reinforcement 7 (6)
spacing
1.4.1 Cover 7 (3)
1.4.2 Spacing 10 (3)
2 Design properties of materials 13 (7)
2.1 Concrete 13 (2)
2.1.1 Characteristic strengths 13 (1)
2.1.2 Standard strength grades 14 (1)
2.1.3 Initial modulus and other 14 (1)
constants
2.2 Steel 15 (3)
2.3 Unit weight 18 (2)
3 Ultimate strength analysis and design for 20 (73)
bending
3.1 Definitions 20 (1)
3.1.1 Analysis 20 (1)
3.1.2 Design 20 (1)
3.1.3 Ultimate strength method 20 (1)
3.2 Ultimate strength theory 21 (2)
3.2.1 Basic assumptions 21 (1)
3.2.2 Actual and equivalent stress 21 (2)
blocks
3.3 Ultimate strength of a singly 23 (13)
reinforced rectangular section
3.3.1 Tension, compression and balanced 23 (2)
failure
3.3.2 Balanced steel ratio 25 (1)
3.3.3 Moment equation for tension 26 (1)
failure (under-reinforced sections)
3.3.4 Moment equation for compression 27 (1)
failure (over-reinforced sections)
3.3.5 Effective moment capacity 28 (1)
3.3.6 Illustrative example for ultimate 29 (4)
strength of a singly reinforced
rectangular section
3.3.7 Spread of reinforcement 33 (3)
3.4 Design of singly reinforced 36 (6)
rectangular sections
3.4.1 Free design 36 (2)
3.4.2 Restricted design 38 (1)
3.4.3 Design example 39 (3)
3.5 Doubly reinforced rectangular sections 42 (12)
3.5.1 Criteria for yielding of Asc at 42 (2)
failure
3.5.2 Analysis formulas 44 (2)
3.5.3 Illustrative examples 46 (2)
3.5.4 Other cases 48 (5)
3.5.5 Summary 53 (1)
3.6 Design of doubly reinforced sections 54 (5)
3.6.1 Design procedure 54 (2)
3.6.2 Illustrative example 56 (3)
3.7 T-beams and other flanged sections 59 (14)
3.7.1 General remarks 59 (1)
3.7.2 Effective flange width 59 (5)
3.7.3 Criteria for T-beams 64 (1)
3.7.4 Analysis 64 (3)
3.7.5 Design procedure 67 (1)
3.7.6 Doubly reinforced T-sections 68 (1)
3.7.7 Illustrative examples 69 (4)
3.8 Nonstandard sections 73 (5)
3.8.1 Analysis 73 (2)
3.8.2 Illustrative example 75 (3)
3.9 Continuous beams 78 (1)
3.10 Detailing and cover 78 (1)
3.11 Problems 79 (14)
4 Deflection of beams and crack control 93 (29)
4.1 General remarks 93 (1)
4.2 Deflection formulas, effective span 93 (4)
and deflection limits
4.2.1 Formulas 93 (2)
4.2.2 Effective span 95 (2)
4.2.3 Limits 97 (1)
4.3 Short-term (immediate) deflection 97 (6)
4.3.1 Effects of cracking 97 (1)
4.3.2 Branson's effective moment of 98 (1)
inertia
4.3.3 Load combinations 99 (1)
4.3.4 Illustrative example 100 (1)
4.3.5 Cantilever and continuous beams 101 (2)
4.4 Long-term deflection 103 (2)
4.4.1 General remarks 103 (1)
4.4.2 The multiplier method 103 (1)
4.4.3 Illustrative example 104 (1)
4.5 Simplified procedure 105 (2)
4.5.1 Minimum effective depth approach 105 (1)
4.5.2 ACI code recommendation 106 (1)
4.6 Total deflection under repeated 107 (4)
loading
4.6.1 Formulas 107 (2)
4.6.2 Illustrative example 109 (2)
4.7 Crack control 111 (6)
4.7.1 General remarks 111 (1)
4.7.2 Standard provisions 111 (2)
4.7.3 Crack-width formulas and 113 (4)
comparison of performances
4.8 Problems 117 (5)
5 Ultimate strength design for shear 122 (30)
5.1 Transverse shear stress and shear 122 (5)
failure
5.1.1 Principal stresses 122 (2)
5.1.2 Typical crack patterns and 124 (2)
failure modes
5.1.3 Mechanism of shear resistance 126 (1)
5.1.4 Shear reinforcement 126 (1)
5.2 Transverse shear design 127 (11)
5.2.1 Definitions 127 (1)
5.2.2 Design shear force and the 128 (1)
capacity reduction factor
5.2.3 Maximum capacity 129 (1)
5.2.4 Shear strength of beams without 129 (1)
shear reinforcement
5.2.5 Shear strength checks and minimum 130 (2)
reinforcement
5.2.6 Design of shear reinforcement 132 (2)
5.2.7 Detailing 134 (1)
5.2.8 Design example 134 (4)
5.3 Longitudinal shear 138 (6)
5.3.1 Shear planes 138 (1)
5.3.2 Design shear stress 139 (1)
5.3.3 Shear stress capacity 140 (1)
5.3.4 Shear plane reinforcement and 141 (1)
detailing
5.3.5 Design example 141 (3)
5.4 Problems 144 (8)
6 Ultimate strength design for torsion 152 (16)
6.1 Introduction 152 (3)
6.1.1 Origin and nature of torsion 152 (1)
6.1.2 Torsional reinforcement 152 (2)
6.1.3 Transverse reinforcement area and 154 (1)
capacity reduction factor
6.2 Maximum torsion 155 (1)
6.3 Checks for reinforcement requirements 156 (1)
6.4 Design for torsional reinforcement 157 (7)
6.4.1 Design formula 157 (1)
6.4.2 Design procedure 158 (1)
6.4.3 Detailing 159 (1)
6.4.4 Design example 159 (5)
6.5 Problems 164 (4)
7 Bond and stress development 168 (14)
7.1 Introduction 168 (2)
7.1.1 General remarks 168 (1)
7.1.2 Anchorage bond and development 168 (1)
length
7.1.3 Mechanism of bond resistance 169 (1)
7.1.4 Effects of bar position 170 (1)
7.2 Design formulas for stress development 170 (5)
7.2.1 Basic and refined development 171 (2)
lengths for a bar in tension
7.2.2 Standard hooks and cog 173 (1)
7.2.3 Deformed and plain bars in 174 (1)
compression
7.2.4 Bundled bars 175 (1)
7.3 Splicing of reinforcement 175 (2)
7.3.1 Bars in tension 176 (1)
7.3.2 Bars in compression 176 (1)
7.3.3 Bundled bars 177 (1)
7.3.4 Mesh in tension 177 (1)
7.4 Illustrative examples 177 (3)
7.4.1 Example 1 177 (2)
7.4.2 Example 2 179 (1)
7.5 Problems 180 (2)
8 Slabs 182 (73)
8.1 Introduction 182 (5)
8.1.1 One-way slabs 182 (1)
8.1.2 Two-way slabs 183 (2)
8.1.3 Effects of concentrated load 185 (1)
8.1.4 Moment redistribution 186 (1)
8.2 One-way slabs 187 (11)
8.2.1 Simplified method of analysis 187 (2)
8.2.2 Reinforcement requirements 189 (1)
8.2.3 Deflection check 190 (2)
8.2.4 Design example 192 (6)
8.3 Two-way slabs supported on four sides 198 (16)
8.3.1 Simplified method of analysis 198 (6)
8.3.2 Reinforcement requirements for 204 (2)
bending
8.3.3 Corner reinforcement 206 (1)
8.3.4 Deflection check 207 (1)
8.3.5 Crack control 208 (1)
8.3.6 Design example 208 (6)
8.4 Multispan two-way slabs 214 (6)
8.4.1 General remarks 214 (1)
8.4.2 Design strips 214 (2)
8.4.3 Limitations of the simplified 216 (1)
method of analysis
8.4.4 Total moment and its distribution 217 (1)
8.4.5 Punching shear 218 (1)
8.4.6 Reinforcement requirements 219 (1)
8.4.7 Shrinkage and temperature steel 220 (1)
8.5 The idealised frame approach 220 (4)
8.5.1 The idealised frame 220 (2)
8.5.2 Structural analysis 222 (1)
8.5.3 Distribution of moments 223 (1)
8.6 Punching shear design 224 (11)
8.6.1 Geometry and definitions 224 (1)
8.6.2 Drop panel and shear head 225 (1)
8.6.3 The basic strength 225 (1)
8.6.4 The ultimate strength 226 (1)
8.6.5 Minimum effective slab thickness 227 (1)
8.6.6 Design of torsion strips 228 (1)
8.6.7 Design of spandrel beams 229 (2)
8.6.8 Detailing of reinforcement 231 (1)
8.6.9 Summary 231 (1)
8.6.10 Illustrative example 232 (3)
8.6.11 Semi-empirical approach and 235 (1)
layered finite element method
8.7 Slab design for multistorey flat 235 (16)
plate structures
8.7.1 Details and idealisation of a 236 (1)
three-storey building
8.7.2 Loading details 237 (1)
8.7.3 Load combinations 238 (2)
8.7.4 Material and other specifications 240 (1)
8.7.5 Structural analysis and moment 240 (1)
envelopes
8.7.6 Design strips and design moments 241 (2)
8.7.7 Design of column and middle strips 243 (5)
8.7.8 Serviceability check - total 248 (1)
deflection
8.7.9 Reinforcement detailing and layout 249 (2)
8.7.10 Comments 251 (1)
8.8 Problems 251 (4)
9 Columns 255 (41)
9.1 Introduction 255 (2)
9.2 Centrally loaded columns 257 (1)
9.3 Columns in uniaxial bending 258 (11)
9.3.1 Strength formulas 258 (2)
9.3.2 Tension, compression, 260 (2)
decompression and balanced failure
9.3.3 Interaction diagram 262 (5)
9.3.4 Approximate analysis of columns 267 (1)
failing in compression
9.3.5 Strengths between decompression 268 (1)
and squash points
9.4 Analysis of columns with an arbitrary 269 (11)
cross-section
9.4.1 Iterative approach 269 (2)
9.4.2 Illustrative example of iterative 271 (4)
approach
9.4.3 Semi-graphical method 275 (2)
9.4.4 Illustrative example of 277 (3)
semi-graphical method
9.5 Capacity reduction factor 280 (1)
9.6 Preliminary design procedure 281 (1)
9.6.1 Design steps 281 (1)
9.6.2 Illustrative example 282 (1)
9.7 Short column requirements 282 (1)
9.8 Moment magnifiers for slender columns 283 (3)
9.8.1 Braced columns 284 (1)
9.8.2 Unbraced columns 285 (1)
9.9 Biaxial bending effects 286 (2)
9.10 Reinforcement requirements 288 (2)
9.10.1 Limitations and bundled bars 288 (1)
9.10.2 Lateral restraint and core 288 (1)
confinement
9.10.3 Recommendations 289 (1)
9.11 Comments 290 (1)
9.12 Problems 291 (5)
10 Walls 296 (15)
10.1 Introduction 296 (1)
10.2 Standard provisions 297 (1)
10.3 Walls under vertical loading only 298 (4)
10.3.1 Simplified method 298 (2)
10.3.2 American Concrete Institute code 300 (1)
provision
10.3.3 New design formula 300 (1)
10.3.4 Alternative column design method 301 (1)
10.4 Walls subjected to in-plane 302 (2)
horizontal forces
10.4.1 General requirements 302 (1)
10.4.2 Design strength in shear 302 (1)
10.4.3 American Concrete Institute 303 (1)
recommendations
10.5 Reinforcement requirements 304 (1)
10.6 Illustrative examples 305 (5)
10.6.1 Example 1 - load-bearing wall 305 (1)
10.6.2 Example 2 - tilt-up panel 306 (1)
10.6.3 Example 3 - the new strength 307 (1)
formula
10.6.4 Example 4 - design shear strength 308 (2)
10.7 Problems 310 (1)
11 Footings, pile caps and retaining walls 311 (64)
11.1 Introduction 311 (1)
11.2 Wall footings 312 (13)
11.2.1 General remarks 312 (2)
11.2.2 Eccentric loading 314 (4)
11.2.3 Concentric loading 318 (1)
11.2.4 Asymmetrical footings 318 (1)
11.2.5 Design example 319 (6)
11.3 Column footings 325 (16)
11.3.1 General remarks 325 (1)
11.3.2 Centrally loaded square footings 326 (1)
11.3.3 Eccentric loading 327 (4)
11.3.4 Multiple columns 331 (1)
11.3.5 Biaxial bending 332 (1)
11.3.6 Reinforcement requirements 333 (1)
11.3.7 Design example 333 (8)
11.4 Pile caps 341 (5)
11.4.1 Concentric column loading 341 (4)
11.4.2 Biaxial bending 345 (1)
11.5 Retaining walls 346 (27)
11.5.1 General remarks 346 (2)
11.5.2 Stability considerations 348 (5)
11.5.3 Active earth pressure 353 (2)
11.5.4 Design subsoil pressures 355 (2)
11.5.5 Design moments and shear forces 357 (2)
11.5.6 Load combinations 359 (1)
11.5.7 Illustrative example 359 (14)
11.6 Problems 373 (2)
Part 2 Prestressed concrete 375 (82)
12 Introduction to prestressed concrete 377 (12)
12.1 General remarks 377 (1)
12.2 Non-engineering examples of 378 (2)
prestressing
12.2.1 Wooden barrel 378 (1)
12.2.2 Stack of books 378 (2)
12.3 Principle of superposition 380 (2)
12.4 Types of prestressing 382 (2)
12.4.1 Pretensioning 382 (1)
12.4.2 Post-tensioning 383 (1)
12.5 Partial prestressing 384 (1)
12.6 Tensile strength of tendons and 385 (1)
cables
12.7 Australian Standard precast 385 (4)
prestressed concrete bridge girder
sections
13 Critical stress state analysis of beams 389 (23)
13.1 Assumptions 389 (1)
13.2 Notation 389 (2)
13.3 Loss of prestress 391 (5)
13.3.1 Standard provisions 391 (1)
13.3.2 Examples of prestress loss due 392 (3)
to elastic shortening of concrete
13.3.3 Effective prestress coefficient 395 (1)
13.3.4 Stress equations at transfer and 395 (1)
after loss
13.4 Permissible stresses c and ct 396 (1)
13.5 Maximum and minimum external moments 397 (3)
13.6 Case A and Case B prestressing 400 (2)
13.6.1 Fundamentals 400 (2)
13.6.2 Applying Case A and Case B 402 (1)
13.7 Critical stress state (CSS) equations 402 (5)
13.7.1 Case A prestressing 403 (1)
13.7.2 Case B prestressing 404 (1)
13.7.3 Summary of Case A and Case B 405 (2)
equations
13.8 Application of CSS equations 407 (2)
13.9 Problems 409 (3)
14 Critical stress state design of beams 412 (22)
14.1 Design considerations 412 (1)
14.2 Formulas and procedures - Case A 413 (3)
14.2.1 Elastic section moduli 413 (1)
14.2.2 Magnel's plot for Case A 414 (1)
14.2.3 Design steps 415 (1)
14.3 Formulas and procedures - Case B 416 (2)
14.3.1 Elastic section moduli 416 (1)
14.3.2 Magnel's plot for Case B 417 (1)
14.3.3 Design steps 418 (1)
14.4 Design examples 418 (14)
14.4.1 Simply supported beam 418 (4)
14.4.2 Simple beam with overhang 422 (4)
14.4.3 Cantilever beam 426 (6)
14.5 Problems 432 (2)
15 Ultimate strength analysis of beams 434 (14)
15.1 General remarks 434 (1)
15.2 Cracking moment (Mcr) 435 (1)
15.2.1 Formula 435 (1)
15.2.2 Illustrative example 435 (1)
15.3 Ultimate moment (Mu) for partially 436 (3)
prestressed sections
15.3.1 General equations 436 (1)
15.3.2 Sections with bonded tendons 437 (1)
15.3.3 Sections with unbonded tendons 438 (1)
15.4 Ductility requirements - reduced 439 (1)
ultimate moment equations
15.5 Design procedure 440 (2)
15.5.1 Recommended steps 440 (1)
15.5.2 Illustrative example 441 (1)
15.6 Nonrectangular sections 442 (3)
15.6.1 Ultimate moment equations 442 (1)
15.6.2 Illustrative example 443 (2)
15.7 Problems 445 (3)
16 End blocks for prestressing anchorages 448 (9)
16.1 General remarks 448 (1)
16.2 Pretensioned beams 448 (2)
16.3 Post-tensioned beams 450 (2)
16.3.1 Bursting stress 451 (1)
16.3.2 Spalling stress 452 (1)
16.3.3 Bearing stress 452 (1)
16.3.4 End blocks 452 (1)
16.4 End-block design 452 (3)
16.4.1 Geometry 452 (1)
16.4.2 Symmetrical prisms and design 453 (1)
bursting forces
16.4.3 Design spalling force 453 (2)
16.4.4 Design for bearing stress 455 (1)
16.5 Reinforcement and distribution 455 (1)
16.6 Crack control 456 (1)
Appendix A Elastic neutral axis 457 (2)
Appendix B Critical shear perimeter 459 (2)
Appendix C Strut-and-tie modelling of concrete 461 (25)
structures
Appendix D Australian Standard precast 486 (2)
prestressed concrete bridge girder sections
References 488 (8)
Index 496