新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
应用时间序列分析
发布日期:2016-06-27  浏览

 

[内容提要]
本书主要介绍了时间序列分析的一些经典和常用分析方法,主要包括ARMA模型、ADF单位根检验、残差自回归模型、ARIMA模型、季节性模型、GARCH类模型、VAR模型、协整和误差修正理论。本书在介绍基本理论的同时,注重厘清在建模实践过程中容易困扰初学者的典型问题。例如在ADF单位根检验过程中如何选择合适的检验模型来进行检验,趋势平稳过程和差分平稳过程的区分以及分别适用于何种建模方法,VAR模型识别过程中变量先后次序的重要性,协整和误差修正模型中何时应加入截距或时间趋势项等。书中针对各种模型,以应用实例的方式介绍了EViews软件中的建模实践过程和注意事项,以帮助初学者掌握时间序列实证分析方法。同时,对每个应用实例还列示了相应的R语言实现命令及其结果,以方便习惯使用R语言的初学者掌握基本的时间序列建模方法。 本书可作为经济、统计、管理或金融类本科生或研究生的入门教材,也可作为时间序列分析实际工作者的应用型参考书。
 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上