新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Planar Dynamical Systems : Selected Classical Problems
发布日期:2015-12-24  浏览

Planar Dynamical Systems : Selected Classical Problems

[Book Description]

This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of an one-year course on nonlinear differential equations.

[Table of Contents]
Preface                                            v
    1 Basic Concept and Linearized Problem of      1  (68)
    Systems
      1.1 Basic Concept and Variable               1  (2)
      Transformation
      1.2 Resultant of the Weierstrass             3  (7)
      Polynomial and Multiplicity of a Singular
      Point
      1.3 Quasi-Algebraic Integrals of             10 (5)
      Polynomial Systems
      1.4 Cauchy Majorant and Analytic             15 (9)
      Properties in a Neighborhood of an
      Ordinary Point
      1.5 Classification of Elementary Singular    24 (6)
      Points and Linearized Problem
      1.6 Node Value and Linearized Problem of     30 (5)
      the Integer-Ratio Node
      1.7 Linearized Problem of the Degenerate     35 (4)
      Node
      1.8 Integrability and Linearized Problem     39 (19)
      of Weak Critical Singular Point
      1.9 Integrability and Linearized Problem     58 (11)
      of the Resonant Singular Point
    2 Focal Values, Saddle Values and Singular     69 (28)
    Point Values
      2.1 Successor Functions and Properties of    69 (5)
      Focal Values
      2.2 Poincare Formal Series and Algebraic     74 (4)
      Equivalence
      2.3 Linear Recursive Formulas for the        78 (5)
      Computation of Singular Point Values
      2.4 The Algebraic Construction of            83 (5)
      Singular Values
      2.5 Elementary Generalized Rotation          88 (2)
      Invariants of the Cubic Systems
      2.6 Singular Point Values and                90 (3)
      Integrability Condition of the Quadratic
      Systems
      2.7 Singular Point Values and                93 (4)
      Integrability Condition of the Cubic
      Systems Having Homogeneous Nonlinearities
    3 Multiple Hopf Bifurcations                   97 (14)
      3.1 The Zeros of Successor Functions in      97 (3)
      the Polar Coordinates
      3.2 Analytic Equivalence                     100(2)
      3.3 Quasi Successor Function                 102(6)
      3.4 Bifurcations of Limit Circle of a        108(3)
      Class of Quadratic Systems
    4 Isochronous Center In Complex Domain         111(27)
      4.1 Isochronous Centers and Period           111(5)
      Constants
      4.2 Linear Recursive Formulas to Compute     116(6)
      Period Constants
      4.3 Isochronous Center for a Class of        122(6)
      Quintic System in the Complex Domain
        4.3.1 The Conditions of Isochronous        123(1)
        Center Under Condition C1
        4.3.2 The Conditions of Isochronous        124(3)
        Center Under Condition C2
        4.3.3 The Conditions of Isochronous        127(1)
        Center Under Condition C3
        4.3.4 Non-Isochronous Center under         128(1)
        Condition C4 and C4
      4.4 The Method of Time-Angle Difference      128(6)
      4.5 The Conditions of Isochronous Center     134(4)
      of the Origin for a Cubic System
    5 Theory of Center-Focus and Bifurcation of    138(42)
    Limit Cycles at Infinity of a Class of
    Systems
      5.1 Definition of the Focal Values of        138(3)
      Infinity
      5.2 Conversion of Questions                  141(3)
      5.3 Method of Formal Series and Singular     144(12)
      Point Value of Infinity
      5.4 The Algebraic Construction of            156(5)
      Singular Point Values of Infinity
      5.5 Singular Point Values at Infinity and    161(7)
      Integrable Conditions for a Class of
      Cubic System
      5.6 Bifurcation of Limit Cycles at           168(4)
      Infinity
      5.7 Isochronous Centers at Infinity of a     172(8)
      Polynomial Systems
        5.7.1 Conditions of Complex Center for     173(3)
        System (5.7.6)
        5.7.2 Conditions of Complex Isochronous    176(4)
        Center for System (5.7.6)
    6 Theory of Center-Focus and Bifurcations      180(25)
    of Limit Cycles for a Class of Multiple
    Singular Points
      6.1 Succession Function and Focal Values     180(2)
      for a Class of Multiple Singular Points
      6.2 Conversion of the Questions              182(2)
      6.3 Formal Series, Integral Factors and      184(12)
      Singular Point Values for a Class of
      Multiple Singular Points
      6.4 The Algebraic Structure of Singular      196(2)
      Point Values of a Class of Multiple
      Singular Points
      6.5 Bifurcation of Limit Cycles From a       198(1)
      Class of Multiple Singular Points
      6.6 Bifurcation of Limit Cycles Created      199(3)
      from a Multiple Singular Point for a
      Class of Quartic System
      6.7 Quasi Isochronous Center of Multiple     202(3)
      Singular Point for a Class of Analytic
      System
    7 On Quasi Analytic Systems                    205(27)
      7.1 Preliminary                              205(3)
      7.2 Reduction of the Problems                208(2)
      7.3 Focal Values, Periodic Constants and     210(4)
      First Integrals of (7.2.3)
      7.4 Singular Point Values and                214(3)
      Bifurcations of Limit Cycles of
      Quasi-Quadratic Systems
      7.5 Integrability of Quasi-Quadratic         217(2)
      Systems
      7.6 Isochronous Center of Quasi-Quadratic    219(9)
      Systems
        7.6.1 The Problem of Complex               219(3)
        Isochronous Centers Under the Condition
        of C1
        7.6.2 The Problem of Complex               222(3)
        Isochronous Centers Under the Condition
        of C2
        7.6.3 The Problem of Complex               225(3)
        Isochronous Centers Under the Other
        Conditions
      7.7 Singular Point Values and Center         228(4)
      Conditions for a Class of Quasi-Cubic
      Systems
    8 Local and Non-Local Bifurcations of          232(40)
    Perturbed Zq-Equivariant Hamiltonian Vector
    Fields
      8.1 Zq-Equivariant Planar Vector Fields      232(10)
      and an Example
      8.2 The Method of Detection Functions:       242(2)
      Rough Perturbations of Zq- Equivariant
      Hamiltonian Vector Fields
      8.3 Bifurcations of Limit Cycles of a Z2-    244(14)
      Equivariant Perturbed Hamiltonian Vector
      Fields
        8.3.1 Hopf Bifurcation Parameter Values    246(1)
        8.3.2 Bifurcations From Heteroclinic or    247(5)
        Homoclinic Loops
        8.3.3 The Values of Bifurcation            252(3)
        Directions of Heteroclinic and
        Homoclinic Loops
        8.3.4 Analysis and Conclusions             255(3)
      8.4 The Rate of Growth of Hilbert Number     258(14)
      H(n) with n
        8.4.1 Preliminary Lemmas                   259(3)
        8.4.2 A Correction to the Lower Bounds     262(3)
        of h(2k -- 1) Given in [Christopher and
        Lloyd, 1995]
        8.4.3 A New Lower Bound for h(2k -- 1)     265(2)
        8.4.4 Lower Bound for H(3 X 2k-1 -- 1)     267(5)
    9 Center-Focus Problem and Bifurcations of     272(36)
    Limit Cycles for a Z2-Equivariant Cubic
    System
      9.1 Standard Form of a Class of System (E)   272(2)
      9.2 Liapunov Constants, Invariant            274(12)
      Integrals and the Necessary and
      Sufficient Conditions of the Existence
      for the Bi-Center
      9.3 The Conditions of Six-Order Weak         286(4)
      Focus and Bifurcations of Limit Cycles
      9.4 A Class of (E) System With 13 Limit      290(4)
      Cycles
      9.5 Proofs of Lemma 9.4.1 and Theorem        294(6)
      9.4.1
      9.6 The Proofs of Lemma 9.4.2 and Lemma      300(8)
      9.4.3
    10 Center-Focus Problem and Bifurcations of    308(34)
    Limit Cycles for Three-Multiple Nilpotent
    Singular Points
      10.1 Criteria of Center-Focus for a          308(3)
      Nilpotent Singular Point
      10.2 Successor Functions and Focus Value     311(3)
      of Three-Multiple Nilpotent Singular Point
      10.3 Bifurcation of Limit Cycles Created     314(8)
      from Three-Multiple Nilpotent Singular
      Point
      10.4 The Classification of Three-Multiple    322(4)
      Nilpotent Singular Points and Inverse
      Integral Factor
      10.5 Quasi-Lyapunov Constants For the        326(3)
      Three-Multiple Nilpotent Singular Point
      10.6 Proof of Theorem 10.5.2                 329(5)
      10.7 On the Computation of Quasi-Lyapunov    334(2)
      Constants
      10.8 Bifurcations of Limit Cycles Created    336(6)
      from a Three-Multiple Nilpotent Singular
      Point of a Cubic System
Bibliography                                       342(27)
Index                                              369

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上