新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Markov Chains : Theory and Applications
发布日期:2015-12-24  浏览

Markov Chains : Theory and Applications

[Book Description]

Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest. The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the Kolmogorov equations, the convergence to equilibrium and the passage time distributions to a state and to a subset of states. These results are applied to birth-and-death processes. He then proposes a detailed study of the uniformization technique by means of Banach algebra. This technique is used for the transient analysis of several queuing systems. Contents 1. Discrete-Time Markov Chains 2. Continuous-Time Markov Chains 3. Birth-and-Death Processes 4. Uniformization 5. Queues About the Authors Bruno Sericola is a Senior Research Scientist at Inria Rennes - Bretagne Atlantique in France. His main research activity is in performance evaluation of computer and communication systems, dependability analysis of fault-tolerant systems and stochastic models.

[Table of Contents]
Preface                                            ix
    Chapter 1 Discrete-Time Markov Chains          1  (88)
      1.1 Definitions and properties               1  (4)
      1.2 Strong Markov property                   5  (3)
      1.3 Recurrent and transient states           8  (4)
      1.4 State classification                     12 (2)
      1.5 Visits to a state                        14 (4)
      1.6 State space decomposition                18 (4)
      1.7 Irreducible and recurrent Markov         22 (8)
      chains
      1.8 Aperiodic Markov chains                  30 (4)
      1.9 Convergence to equilibrium               34 (7)
      1.10 Ergodic theorem                         41 (12)
      1.11 First passage times and number of       53 (15)
      visits
        1.11.1 First passage time to a state       53 (5)
        1.11.2 First passage time to a subset      58 (6)
        of states
        1.11.3 Expected number of visits           64 (4)
      1.12 Finite Markov chains                    68 (2)
      1.13 Absorbing Markov chains                 70 (6)
      1.14 Examples                                76 (11)
        1.14.1 Two-state chain                     76 (2)
        1.14.2 Gambler's ruin                      78 (4)
        1.14.3 Success runs                        82 (5)
      1.15 Bibliographical notes                   87 (2)
    Chapter 2 Continuous-Time Markov Chains        89 (102)
      2.1 Definitions and properties               92 (1)
      2.2 Transition functions and                 93 (15)
      infinitesimal generator
      2.3 Kolmogorov's backward equation           108(6)
      2.4 Kolmogorov's forward equation            114(13)
      2.5 Existence and uniqueness of the          127(3)
      solutions
      2.6 Recurrent and transient states           130(7)
      2.7 State classification                     137(4)
      2.8 Explosion                                141(7)
      2.9 Irreducible and recurrent Markov         148(14)
      chains
      2.10 Convergence to equilibrium              162(4)
      2.11 Ergodic theorem                         166(6)
      2.12 First passage times                     172(12)
        2.12.1 First passage time to a state       172(5)
        2.12.2 First passage time to a subset      177(7)
        of states
      2.13 Absorbing Markov chains                 184(6)
      2.14 Bibliographical notes                   190(1)
    Chapter 3 Birth-and-Death Processes            191(44)
      3.1 Discrete-time birth-and-death            191(9)
      processes
      3.2 Absorbing discrete-time                  200(8)
      birth-and-death processes
        3.2.1 Passage times and convergence to     201(3)
        equilibrium
        3.2.2 Expected number of visits            204(4)
      3.3 Periodic discrete-time                   208(1)
      birth-and-death processes
      3.4 Continuous-time pure birth processes     209(4)
      3.5 Continuous-time birth-and-death          213(15)
      processes
        3.5.1 Explosion                            215(2)
        3.5.2 Positive recurrence                  217(3)
        3.5.3 First passage time                   220(5)
        3.5.4 Explosive chain having an            225(1)
        invariant probability
        3.5.5 Explosive chain without invariant    226(1)
        probability
        3.5.6 Positive or null recurrent           227(1)
        embedded chain
      3.6 Absorbing continuous-time                228(5)
      birth-and-death processes
        3.6.1 Passage times and convergence to     229(2)
        equilibrium
        3.6.2 Explosion                            231(2)
      3.7 Bibliographical notes                    233(2)
    Chapter 4 Uniformization                       235(52)
      4.1 Introduction                             235(2)
      4.2 Banach spaces and algebra                237(6)
      4.3 Infinite matrices and vectors            243(6)
      4.4 Poisson process                          249(14)
        4.4.1 Order statistics                     252(3)
        4.4.2 Weighted Poisson distribution        255(3)
        computation
        4.4.3 Truncation threshold computation     258(5)
      4.5 Uniformizable Markov chains              263(10)
      4.6 First passage time to a subset of        273(2)
      states
      4.7 Finite Markov chains                     275(1)
      4.8 Transient regime                         276(10)
        4.8.1 State probabilities computation      276(4)
        4.8.2 First passage time distribution      280(2)
        computation
        4.8.3 Application to birth-and-death       282(4)
        processes
      4.9 Bibliographical notes                    286(1)
    Chapter 5 Queues                               287(94)
      5.1 The M/M/1 queue                          288(27)
        5.1.1 State probabilities                  290(21)
        5.1.2 Busy period distribution             311(4)
      5.2 The M/M/c queue                          315(3)
      5.3 The M/M/∞ queue                    318(5)
      5.4 Phase-type distributions                 323(3)
      5.5 Markovian arrival processes              326(16)
        5.5.1 Definition and transient regime      326(10)
        5.5.2 Joint distribution of the            336(5)
        interarrival times
        5.5.3 Phase-type renewal processes         341(1)
        5.5.4 Markov modulated Poisson processes   342(1)
      5.6 Batch Markovian arrival process          342(10)
        5.6.1 Definition and transient regime      342(7)
        5.6.2 Joint distribution of the            349(3)
        interarrival times
      5.7 Block-structured Markov chains           352(18)
        5.7.1 Transient regime of SFL chains       354(9)
        5.7.2 Transient regime of SFR chains       363(7)
      5.8 Applications                             370(10)
        5.8.1 The M/PH/1 queue                     370(2)
        5.8.2 The PH/M/1 queue                     372(1)
        5.8.3 The PH/PH/1 queue                    372(1)
        5.8.4 The PH/PH/c queue                    373(3)
        5.8.5 The BMAP/PH/1 queue                  376(1)
        5.8.6 The BMAP/PH/c queue                  377(3)
      5.9 Bibliographical notes                    380(1)
Appendix 1 Basic Results                           381(6)
Bibliography                                       387(8)
Index                                              395

 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上