新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Introduction to Mixed Modelling : Beyond Regression and Analysis of Variance
发布日期:2015-12-24  浏览

Introduction to Mixed Modelling : Beyond Regression and Analysis of Variance

[Book Description]

Mixed modelling is very useful, and easier than you think! Mixed modelling is now well established as a powerful approach to statistical data analysis. It is based on the recognition of random-effect terms in statistical models, leading to inferences and estimates that have much wider applicability and are more realistic than those otherwise obtained. Introduction to Mixed Modelling leads the reader into mixed modelling as a natural extension of two more familiar methods, regression analysis and analysis of variance. It provides practical guidance combined with a clear explanation of the underlying concepts. Like the first edition, this new edition shows diverse applications of mixed models, provides guidance on the identification of random-effect terms, and explains how to obtain and interpret best linear unbiased predictors (BLUPs). It also introduces several important new topics, including the following: Use of the software SAS, in addition to GenStat and R. Meta-analysis and the multiple testing problem. The Bayesian interpretation of mixed models.Including numerous practical exercises with solutions, this book provides an ideal introduction to mixed modelling for final year undergraduate students, postgraduate students and professional researchers. It will appeal to readers from a wide range of scientific disciplines including statistics, biology, bioinformatics, medicine, agriculture, engineering, economics, archaeology and geography. Praise for the first edition: "One of the main strengths of the text is the bridge it provides between traditional analysis of variance and regression models and the more recently developed class of mixed models...Each chapter is well-motivated by at least one carefully chosen example...demonstrating the broad applicability of mixed models in many different disciplines...most readers will likely learn something new, and those previously unfamiliar with mixed models will obtain a solid foundation on this topic."- Kerrie Nelson University of South Carolina, in American Statistician, 2007

[Table of Contents]
Preface                                            xi
1 The need for more than one random-effect term    1  (51)
when fitting a regression line
  1.1 A data set with several observations of      1  (1)
  variable Y at each value of variable X
  1.2 Simple regression analysis: Use of the       2  (7)
  software GenStat to perform the analysis
  1.3 Regression analysis on the group means       9  (1)
  1.4 A regression model with a term for the       10 (3)
  groups
  1.5 Construction of the appropriate F test       13 (1)
  for the significance of the explanatory
  variable when groups are present
  1.6 The decision to specify a model term as      14 (2)
  random: A mixed model
  1.7 Comparison of the tests in a mixed model     16 (1)
  with a test of lack of fit
  1.8 The use of Residual Maximum Likelihood       17 (4)
  (REML) to fit the mixed model
  1.9 Equivalence of the different analyses        21 (5)
  when the number of observations per group is
  constant
  1.10 Testing the assumptions of the analyses:    26 (2)
  Inspection of the residual values
  1.11 Use of the software R to perform the        28 (5)
  analyses
  1.12 Use of the software SAS to perform the      33 (7)
  analyses
  1.13 Fitting a mixed model using GenStat's       40 (6)
  Graphical User Interface (GUI)
  1.14 Summary                                     46 (1)
  1.15 Exercises                                   47 (4)
  References                                       51 (1)
2 The need for more than one random-effect term    52 (35)
in a designed experiment
  2.1 The split plot design: A design with more    52 (2)
  than one random-effect term
  2.2 The analysis of variance of the split        54 (8)
  plot design: A random-effect term for the
  main plots
  2.3 Consequences of failure to recognize the     62 (2)
  main plots when analysing the split plot
  design
  2.4 The use of mixed modelling to analyse the    64 (2)
  split plot design
  2.5 A more conservative alternative to the F     66 (1)
  and Wald statistics
  2.6 Justification for regarding block effects    67 (1)
  as random
  2.7 Testing the assumptions of the analyses:     68 (3)
  Inspection of the residual values
  2.8 Use of R to perform the analyses             71 (6)
  2.9 Use of SAS to perform the analyses           77 (4)
  2.10 Summary                                     81 (1)
  2.11 Exercises                                   82 (4)
  References                                       86 (1)
3 Estimation of the variances of random-effect     87 (50)
terms
  3.1 The need to estimate variance components     87 (1)
  3.2 A hierarchical random-effects model for a    87 (4)
  three-stage assay process
  3.3 The relationship between variance            91 (2)
  components and stratum mean squares
  3.4 Estimation of the variance components in     93 (2)
  the hierarchical random-effects model
  3.5 Design of an optimum strategy for future     95 (3)
  sampling
  3.6 Use of R to analyse the hierarchical         98 (2)
  three-stage assay process
  3.7 Use of SAS to analyse the hierarchical       100(2)
  three-stage assay process
  3.8 Genetic variation: A crop field trial        102(4)
  with an unbalanced design
  3.9 Production of a balanced experimental        106(4)
  design by 'padding' with missing values
  3.10 Specification of a treatment term as a      110(2)
  random-effect term: The use of mixed-model
  analysis to analyse an unbalanced data set
  3.11 Comparison of a variance component          112(1)
  estimate with its standard error
  3.12 An alternative significance test for        113(3)
  variance components
  3.13 Comparison among significance tests for     116(1)
  variance components
  3.14 Inspection of the residual values           117(1)
  3.15 Heritability: The prediction of genetic     117(5)
  advance under selection
  3.16 Use of R to analyse the unbalanced field    122(3)
  trial
  3.17 Use of SAS to analyse the unbalanced        125(3)
  field trial
  3.18 Estimation of variance components in the    128(2)
  regression analysis on grouped data
  3.19 Estimation of variance components for       130(2)
  block effects in the split-plot experimental
  design
  3.20 Summary                                     132(1)
  3.21 Exercises                                   133(3)
  References                                       136(1)
4 Interval estimates for fixed-effect terms in     137(28)
mixed models
  4.1 The concept of an interval estimate          137(1)
  4.2 Standard errors for regression               138(4)
  coefficients in a mixed-model analysis
  4.3 Standard errors for differences between      142(2)
  treatment means in the split-plot design
  4.4 A significance test for the difference       144(3)
  between treatment means
  4.5 The least significant difference (LSD)       147(4)
  between treatment means
  4.6 Standard errors for treatment means in       151(6)
  designed experiments: A difference in
  approach between analysis of variance and
  mixed-model analysis
  4.7 Use of R to obtain SEs of means in a         157(2)
  designed experiment
  4.8 Use of SAS to obtain SEs of means in a       159(2)
  designed experiment
  4.9 Summary                                      161(2)
  4.10 Exercises                                   163(1)
  References                                       164(1)
5 Estimation of random effects in mixed models:    165(27)
Best Linear Unbiased Predictors (BLUPs)
  5.1 The difference between the estimates of      165(3)
  fixed and random effects
  5.2 The method for estimation of random          168(2)
  effects: The best linear unbiased predictor
  (BLUP) or 'shrunk estimate'
  5.3 The relationship between the shrinkage of    170(6)
  BLUPs and regression towards the mean
  5.4 Use of R for the estimation of fixed and     176(2)
  random effects
  5.5 Use of SAS for the estimation of random      178(4)
  effects
  5.6 The Bayesian interpretation of BLUPs:        182(5)
  Justification of a random-effect term without
  invoking an underlying infinite population
  5.7 Summary                                      187(1)
  5.8 Exercises                                    188(3)
  References                                       191(1)
6 More advanced mixed models for more elaborate    192(25)
data sets
  6.1 Features of the models introduced so far:    192(1)
  A review
  6.2 Further combinations of model features       192(3)
  6.3 The choice of model terms to be specified    195(2)
  as random
  6.4 Disagreement concerning the appropriate      197(7)
  significance test when fixed- and
  random-effect terms interact: 'The great
  mixed-model muddle'
  6.5 Arguments for specifying block effects as    204(5)
  random
  6.6 Examples of the choice of fixed- and         209(4)
  random-effect specification of terms
  6.7 Summary                                      213(2)
  6.8 Exercises                                    215(1)
  References                                       216(1)
7 Three case studies                               217(78)
  7.1 Further development of mixed modelling       217(1)
  concepts through the analysis of specific
  data sets
  7.2 A fixed-effects model with several           218(15)
  variates and factors
  7.3 Use of R to fit the fixed-effects model      233(4)
  with several variates and factors
  7.4 Use of SAS to fit the fixed-effects model    237(5)
  with several variates and factors
  7.5 A random coefficient regression model        242(4)
  7.6 Use of R to fit the random coefficients      246(1)
  model
  7.7 Use of SAS to fit the random coefficients    247(2)
  model
  7.8 A random-effects model with several          249(17)
  factors
  7.9 Use of R to fit the random-effects model     266(8)
  with several factors
  7.10 Use of SAS to fit the random-effects        274(8)
  model with several factors
  7.11 Summary                                     282(1)
  7.12 Exercises                                   282(12)
  References                                       294(1)
8 Meta-analysis and the multiple testing problem   295(55)
  8.1 Meta-analysis: Combined analysis of a set    295(1)
  of studies
  8.2 Fixed-effect meta-analysis with              296(5)
  estimation only of the main effect of
  treatment
  8.3 Random-effects meta-analysis with            301(2)
  estimation of study x treatment interaction
  effects
  8.4 A random-effect interaction between two      303(4)
  fixed-effect terms
  8.5 Meta-analysis of individual-subject data     307(5)
  using R
  8.6 Meta-analysis of individual-subject data     312(6)
  using SAS
  8.7 Meta-analysis when only summary data are     318(8)
  available
  8.8 The multiple testing problem: Shrinkage      326(12)
  of BLUPs as a defence against the Winner's
  Curse
  8.9 Fitting of multiple models using R           338(2)
  8.10 Fitting of multiple models using SAS        340(2)
  8.11 Summary                                     342(1)
  8.12 Exercises                                   343(5)
  References                                       348(2)
9 The use of mixed models for the analysis of      350(29)
unbalanced experimental designs
  9.1 A balanced incomplete block design           350(4)
  9.2 Imbalance due to a missing block:            354(4)
  Mixed-model analysis of the incomplete block
  design
  9.3 Use of R to analyse the incomplete block     358(2)
  design
  9.4 Use of SAS to analyse the incomplete         360(2)
  block design
  9.5 Relaxation of the requirement for            362(6)
  balance: Alpha designs
  9.6 Approximate balance in two directions:       368(5)
  The alphalpha design
  9.7 Use of R to analyse the alphalpha design     373(1)
  9.8 Use of SAS to analyse the alphalpha design   374(2)
  9.9 Summary                                      376(1)
  9.10 Exercises                                   377(1)
  References                                       378(1)
10 Beyond mixed modelling                          379(75)
  10.1 Review of the uses of mixed models          379(1)
  10.2 The generalized linear mixed model          380(8)
  (GLMM): Fitting a logistic (sigmoidal) curve
  to proportions of observations
  10.3 Use of R to fit the logistic curve          388(2)
  10.4 Use of SAS to fit the logistic curve        390(2)
  10.5 Fitting a GLMM to a contingency table:      392(11)
  Trouble-shooting when the mixed modelling
  process fails
  10.6 The hierarchical generalized linear         403(7)
  model (HGLM)
  10.7 Use of R to fit a GLMM and a HGLM to a      410(5)
  contingency table
  10.8 Use of SAS to fit a GLMM to a               415(3)
  contingency table
  10.9 The role of the covariance matrix in the    418(3)
  specification of a mixed model
  10.10 A more general pattern in the              421(10)
  covariance matrix: Analysis of pedigrees and
  genetic data
  10.11 Estimation of parameters in the            431(10)
  covariance matrix: Analysis of temporal and
  spatial variation
  10.12 Use of R to model spatial variation        441(3)
  10.13 Use of SAS to model spatial variation      444(3)
  10.14 Summary                                    447(1)
  10.15 Exercises                                  447(5)
  References                                       452(2)
11 Why is the criterion for fitting mixed          454(23)
models called Residual Maximum Likelihood?
  11.1 Maximum likelihood and residual maximum     454(1)
  likelihood
  11.2 Estimation of the variance σイ from    455(1)
  a single observation using the
  maximum-likelihood criterion
  11.3 Estimation of σイ from more than       455(2)
  one observation
  11.4 The オ-effect axis as a dimension within     457(3)
  the sample space
  11.5 Simultaneous estimation of オ and            460(2)
  σイ using the maximum-likelihood
  criterion
  11.6 An alternative estimate of σイ         462(3)
  using the REML criterion
  11.7 Bayesian justification of the REML          465(1)
  criterion
  11.8 Extension to the general linear model:      465(5)
  The fixed-effect axes as a sub-space of the
  sample space
  11.9 Application of the REML criterion to the    470(2)
  general linear model
  11.10 Extension to models with more than one     472(1)
  random-effect term
  11.11 Summary                                    473(1)
  11.12 Exercises                                  474(2)
  References                                       476(1)
Index                                              477

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上