新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Large Scale Geometry
发布日期:2015-12-17  浏览

Large Scale Geometry

[Book Description]

With recent changes in multicore and general-purpose computing on graphics processing units, the way parallel computers are used and programmed has drastically changed. It is important to provide a comprehensive study on how to use such machines written by specialists of the domain. The book provides recent research results in high-performance computing on complex environments, information on how to efficiently exploit heterogeneous and hierarchical architectures and distributed systems, detailed studies on the impact of applying heterogeneous computing practices to real problems, and applications varying from remote sensing to tomography. The content spans topics such as Numerical Analysis for Heterogeneous and Multicore Systems; Optimization of Communication for High Performance Heterogeneous and Hierarchical Platforms; Efficient Exploitation of Heterogeneous Architectures, Hybrid CPU+GPU, and Distributed Systems; Energy Awareness in High-Performance Computing; and Applications of Heterogeneous High-Performance Computing.

• Covers cutting-edge research in HPC on complex environments, following an international collaboration of members of the ComplexHPC

• Explains how to efficiently exploit heterogeneous and hierarchical architectures and distributed systems

• Twenty-three chapters and over 100 illustrations cover domains such as numerical analysis, communication and storage, applications, GPUs and accelerators, and energy efficiency

[Table of Contents]
Preface                                            vii
Notation and conventions                           xiii
1 Metric spaces and large scale geometry           1   (25)
  1.1 Metric spaces                                1   (5)
  1.2 Groups as metric spaces                      6   (3)
  1.3 Quasi-isometries                             9   (6)
  1.4 Coarse equivalences                          15  (4)
  1.5 Hyperbolic spaces                            19  (5)
  Exercises                                        24  (1)
  Notes and remarks                                25  (1)
2 Asymptotic dimension and decomposition           26  (23)
complexity
  2.1 Topological dimension                        26  (1)
  2.2 Asymptotic dimension                         27  (3)
  2.3 Dimension of hyperbolic groups               30  (2)
  2.4 Upper bounds for asymptotic dimension        32  (4)
  2.5 Asymptotic dimension of solvable groups      36  (2)
  2.6 Groups with infinite asymptotic dimension    38  (1)
  2.7 Decomposition complexity                     39  (3)
  2.8 Invariance and permanence                    42  (3)
  2.9 Groups with finite decomposition             45  (2)
  complexity
  Exercises                                        47  (1)
  Notes and remarks                                47  (2)
3 Amenability                                      49  (14)
  3.1 F?lner conditions                            49  (6)
  3.2 The Hulanicki-Reiter condition               55  (3)
  3.3 Invariant means                              58  (3)
  Exercises                                        61  (1)
  Notes and remarks                                61  (2)
4 Property A                                       63  (20)
  4.1 Definition and basic properties              63  (3)
  4.2 The Higson-Roe condition                     66  (4)
  4.3 Finite asymptotic dimension implies          70  (3)
  property A
  4.4 Property A and residually finite groups      73  (5)
  4.5 Locally finite examples                      78  (3)
  Exercises                                        81  (1)
  Notes and remarks                                81  (2)
5 Coarse embeddings                                83  (36)
  5.1 Coarse embeddings                            83  (1)
  5.2 Embeddability into Hilbert spaces            84  (5)
  5.3 Examples of embeddable spaces without        89  (2)
  property A
  5.4 Convexity and reflexivity                    91  (5)
  5.5 Coarse embeddings and finite subsets         96  (2)
  5.6 Expanders                                    98  (3)
  5.7 A geometric characterization of              101 (7)
  non-embeddability
  5.8 Compression of coarse embeddings             108 (2)
  5.9 Compression > ス implies property A           110 (6)
  Exercises                                        116 (1)
  Notes and remarks                                117 (2)
6 Group actions on Banach spaces                   119 (24)
  6.1 Affine isometric actions                     119 (2)
  6.2 Metrically proper actions and                121 (4)
  a-T-menability
  6.3 Actions on lp-spaces and reflexive Banach    125 (3)
  spaces
  6.4 Kazhdan's property (T)                       128 (2)
  6.5 Fixed points and Kazhdan's property (T)      130 (2)
  6.6 Construction of expanders                    132 (2)
  6.7 Property (T) and spectral conditions         134 (6)
  Exercises                                        140 (1)
  Notes and remarks                                141 (2)
7 Coarse homology                                  143 (23)
  7.1 Coarse locally finite homology               143 (1)
  7.2 Uniformly finite homology                    144 (5)
  7.3 Eilenberg swindles and Ponzi schemes         149 (5)
  7.4 Aperiodic tiles and non-amenable spaces      154 (6)
  7.5 Coarsening homology theories                 160 (2)
  7.6 The coarsening homomorphism                  162 (3)
  Exercises                                        165 (1)
  Notes and remarks                                165 (1)
8 Survey of applications                           166 (6)
  8.1 Topological rigidity                         166 (1)
  8.2 Geometric rigidity                           167 (2)
  8.3 Index theory                                 169 (3)
References                                         172 (15)
Index                                              187

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上