新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Combustion
发布日期:2015-12-17  浏览

Combustion

[Book Description]

Throughout its previous four editions, Combustion has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engineering applications, this new edition continues that tradition. Greatly expanded end-of-chapter problem sets and new areas of combustion engineering applications make it even easier for students to grasp the significance of combustion to a wide range of engineering practice, from transportation to energy generation to environmental impacts. Combustion engineering is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-including power generation in internal combustion automobile engines and gas turbine engines. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions, make this a crucial area of engineering.* New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all interrelated and discussed by considering scaling issues (e.g., length and time scales)* New information on sensitivity analysis of reaction mechanisms and generation and application of reduced mechanisms* Expanded coverage of turbulent reactive flows to better illustrate real-world applications* Important new sections on stabilization of diffusion flames-for the first time, the concept of triple flames will be introduced and discussed in the context of diffusion flame stabilization

[Table of Contents]
Preface                                            xv
Chapter 1 Chemical thermodynamics and flame        1  (40)
temperatures
  1.1 Introduction                                 1  (1)
  1.2 Heats of Reaction and Formation              1  (7)
  1.3 Free Energy and the Equilibrium Constants    8  (8)
  1.4 Flame Temperature Calculations               16 (15)
    1.4.1 Analysis                                 16 (5)
    1.4.2 Practical Considerations                 21 (10)
  1.5 Sub and Supersonic Combustion                31 (3)
  Thermodynamics
    1.5.1 Comparisons                              31 (1)
    1.5.2 Stagnation Pressure Considerations       32 (2)
  Problems                                         34 (5)
  References                                       39 (2)
Chapter 2 Chemical kinetics                        41 (30)
  2.1 Introduction                                 41 (1)
  2.2 Rates of Reactions and their Temperature     41 (9)
  Dependence
    2.2.1 The Arrhenius Rate Expression            43 (2)
    2.2.2 Transition State and Recombination       45 (5)
    Rate Theories
  2.3 Simultaneous Interdependent Reactions        50 (1)
  2.4 Chain Reactions                              51 (3)
  2.5 Pseudo-First-Order Reactions and the         54 (3)
  "Falloff" Range
  2.6 The Partial Equilibrium Assumption           57 (1)
  2.7 Pressure Effect in Fractional Conversion     58 (1)
  2.8 Chemical Kinetics of Large Reaction          59 (6)
  Mechanisms
    2.8.1 Sensitivity Analysis                     60 (2)
    2.8.2 Rate-of-Production Analysis              62 (1)
    2.8.3 Coupled Thermal and Chemical Reacting    62 (2)
    Systems
    2.8.4 Mechanism Simplification                 64 (1)
  Problems                                         65 (4)
  References                                       69 (2)
Chapter 3 Explosive and general oxidative          71 (76)
characteristics of fuels
  3.1 Introduction                                 71 (1)
  3.2 Chain Branching Reactions and Criteria       71 (7)
  for Explosion
  3.3 Explosion Limits and Oxidation               78 (8)
  Characteristics of Hydrogen
  3.4 Explosion Limits and Oxidation               86 (5)
  Characteristics of Carbon Monoxide
  3.5 Explosion Limits and Oxidation               91 (14)
  Characteristics of Hydrocarbons
    3.5.1 Organic Nomenclature                     92 (4)
    3.5.2 Explosion Limits                         96 (3)
    3.5.3 "Low-Temperature" Hydrocarbon            99 (6)
    Oxidation Mechanisms
  3.6 The Oxidation of Aldehydes                   105(1)
  3.7 The Oxidation of Methane                     106(5)
    3.7.1 Low-Temperature Mechanism                106(2)
    3.7.2 High-Temperature Mechanism               108(3)
  3.8 The Oxidation of Higher-Order Hydrocarbons   111(30)
    3.8.1 Aliphatic Hydrocarbons                   111(9)
    3.8.2 Alcohols                                 120(3)
    3.8.3 Aromatic Hydrocarbons                    123(9)
    3.8.4 Supercritical Effects                    132(3)
    3.8.5 Biofuels                                 135(6)
  Problems                                         141(2)
  References                                       143(4)
Chapter 4 Flame phenomena in premixed              147(108)
combustible gases
  4.1 Introduction                                 147(4)
  4.2 Laminar Flame Structure                      151(2)
  4.3 Laminar Flame Speed                          153(36)
    4.3.1 Theory of Mallard and Le Chatelier       155(5)
    4.3.2 Theory of Zeldovich,                     160(6)
    Frank-Kamenetskii, and Semenov
    4.3.3 Comprehensive Theory and Laminar         166(8)
    Flame Structure Analysis
    4.3.4 Laminar Flame and Energy Equation        174(1)
    4.3.5 Flame Speed Measurements                 174(8)
    4.3.6 Experimental Results猶hysical and        182(7)
    Chemical Effects
  4.4 Stability Limits of Laminar Flames           189(19)
    4.4.1 Flammability Limits                      189(8)
    4.4.2 Quenching Distance                       197(1)
    4.4.3 Flame Stabilization (Low Velocity)       198(7)
    4.4.4 Stability Limits and Design              205(3)
  4.5 Flame Progagation through Stratified         208(2)
  Combustible Mixtures
  4.6 Turbulent Reacting Flows and Turbulent       210(21)
  Flames
    4.6.1 Rate of Reaction in a Turbulent Field    212(3)
    4.6.2 Regimes of Turbulent Reacting Flows      215(12)
    4.6.3 Turbulent Flame Speed                    227(4)
  4.7 Stirred Reactor Theory                       231(4)
  4.8 Flame Stabilization in High-Velocity         235(10)
  Streams
  4.9 Combustion in Small Volumes                  245(3)
  Problems                                         248(3)
  References                                       251(4)
Chapter 5 Detonation                               255(46)
  5.1 Introduction                                 255(3)
    5.1.1 Premixed and Diffusion Flames            255(1)
    5.1.2 Explosion, Deflagration, and             255(1)
    Detonation
    5.1.3 The Onset of Detonation                  256(2)
  5.2 Detonation Phenomena                         258(1)
  5.3 Hugoniot Relations and the Hydrodynamic      259(18)
  Theory of Detonations
    5.3.1 Characterization of the Hugoniot         260(9)
    Curve and the Uniqueness of the Chapman
    Jouguet Point
    5.3.2 Determination of the Speed of Sound      269(4)
    in the Burned Gases for Conditions above
    the C憂 Point
    5.3.3 Calculation of the Detonation Velocity   273(4)
  5.4 Comparison of Detonation Velocity            277(7)
  Calculations with Experimental Results
  5.5 The ZND Structure of Detonation Waves        284(4)
  5.6 The Structure of the Cellular Detonation     288(8)
  Front and Other Detonation Phenomena
  Parameters
    5.6.1 The Cellular Detonation Front            288(4)
    5.6.2 The Dynamic Detonation Parameters        292(1)
    5.6.3 Detonation Limits                        293(3)
  5.7 Detonations in Nongaseous Media              296(1)
  Problems                                         297(1)
  References                                       298(3)
Chapter 6 Diffusion flames                         301(62)
  6.1 Introduction                                 301(1)
  6.2 Gaseous Fuel Jets                            301(21)
    6.2.1 Appearance                               302(4)
    6.2.2 Structure                                306(3)
    6.2.3 Theoretical Considerations               309(3)
    6.2.4 The Burke祐chumann Development           312(7)
    6.2.5 Conserved Scalars and Mixture Fraction   319(1)
    6.2.6 Turbulent Fuel Jets                      320(2)
  6.3 Burning of Condensed Phases                  322(28)
    6.3.1 General Mass Burning Considerations      323(4)
    and the Evaporation Coefficient
    6.3.2 Single Fuel Droplets in Quiescent        327(23)
    Atmospheres
  6.4 Burning of Droplet Clouds                    350(1)
  6.5 Burning in Convective Atmospheres            351(8)
    6.5.1 The Stagnant Film Case                   351(2)
    6.5.2 The Longitudinally Burning Surface       353(2)
    6.5.3 The Flowing Droplet Case                 355(2)
    6.5.4 Burning Rates of Plastics: The Small     357(2)
    B Assumption and Radiation Effects
  Problems                                         359(2)
  References                                       361(2)
Chapter 7 Ignition                                 363(30)
  7.1 Concepts                                     363(3)
  7.2 Chain Spontaneous Ignition                   366(2)
  7.3 Thermal Spontaneous Ignition                 368(10)
    7.3.1 Semenov Approach of Thermal Ignition     368(5)
    7.3.2 Frank-Kamenetskii Theory of Thermal      373(5)
    Ignition
  7.4 Forced Ignition                              378(7)
    7.4.1 Spark Ignition and Minimum Ignition      379(5)
    Energy
    7.4.2 Ignition by Adiabatic Compression and    384(1)
    Shock Waves
  7.5 Other Ignition Concepts                      385(5)
    7.5.1 Hypergolicity and Pyrophoricity          386(3)
    7.5.2 Catalytic Ignition                       389(1)
  Problems                                         390(1)
  References                                       391(2)
Chapter 8 Environmental combustion                 393(84)
considerations
  8.1 Introduction                                 393(1)
  8.2 The Nature of Photochemical Smog             394(6)
    8.2.1 Primary and Secondary Pollutants         395(1)
    8.2.2 The Effect of NOx                        395(3)
    8.2.3 The Effect of SOx                        398(2)
  8.3 Formation and Reduction of Nitrogen Oxides   400(24)
    8.3.1 Structure of Nitrogen Oxides             402(1)
    8.3.2 Effect of Flame Structure                403(1)
    8.3.3 Reaction Mechanisms of Oxides of         403(16)
    Nitrogen
    8.3.4 Reduction of NOx                         419(5)
  8.4 SO, Emissions                                424(14)
    8.4.1 Product Composition and Structure of     425(1)
    Sulfur Compounds
    8.4.2 Oxidative Mechanisms of Sulfur Fuels     426(12)
  8.5 Particulate Formation                        438(28)
    8.5.1 Characteristics of Soot                  439(1)
    8.5.2 Soot Formation Processes                 440(1)
    8.5.3 Experimental Systems and Soot            441(2)
    Formation
    8.5.4 Sooting Tendencies                       443(12)
    8.5.5 Detailed Structure of Sooting Flames     455(5)
    8.5.6 Chemical Mechanisms of Soot Formation    460(3)
    8.5.7 Influence of Physical and Chemical       463(3)
    Parameters on Soot Formation
  8.6 Stratospheric Ozone                          466(5)
    8.6.1 The HOx Catalytic Cycle                  467(1)
    8.6.2 The NOx Catalytic Cycle                  468(2)
    8.6.3 The ClOx Catalytic Cycle                 470(1)
  Problems                                         471(1)
  References                                       472(5)
Chapter 9 Combustion of nonvolatile fuels          477(60)
  9.1 Carbon Char, Soot, and Metal Combustion      477(1)
  9.2 Metal Combustion Thermodynamics              478(23)
    9.2.1 The Criterion for Vapor-Phase            478(1)
    Combustion
    9.2.2 Thermodynamics of Metal涌xygen Systems   478(13)
    9.2.3 Thermodynamics of Metal輸ir Systems      491(4)
    9.2.4 Combustion Synthesis                     495(6)
  9.3 Diffusional Kinetics                         501(2)
  9.4 Diffusion-Controlled Burning Rate            503(11)
    9.4.1 Burning of Metals in Nearly Pure         504(2)
    Oxygen
    9.4.2 Burning of Small Particles優iffusion     506(4)
    versus Kinetic Limits
    9.4.3 The Burning of Boron Particles           510(1)
    9.4.4 Carbon Particle Combustion (C.R.         511(3)
    Shaddix)
  9.5 Practical Carbonaceous Fuels (C.R.           514(13)
  Shaddix)
    9.5.1 Devolatilization                         514(5)
    9.5.2 Char Combustion                          519(1)
    9.5.3 Pulverized Coal Char Oxidation           520(2)
    9.5.4 Gasification and Oxycombustion           522(5)
  9.6 Soot Oxidation (C.R. Shaddix)                527(3)
  9.7 Catalytic Combustion                         530(4)
  Problems                                         534(1)
  References                                       534(3)
Appendixes                                         537(210)
  Appendix A Thermochemical data and conversion    539(112)
  factors
  Appendix B Adiabatic flame temperatures of       651(4)
  hydrocarbons
  Appendix C Specific reaction rate constants      655(26)
  Appendix D Bond dissociation energies of         681(8)
  hydrocarbons
  Appendix E Flammability limits in air            689(8)
  Appendix F Laminar flame speeds                  697(8)
  Appendix G Spontaneous ignition temperature      705(26)
  data
  Appendix H Minimum spark ignition energies       731(4)
  and quenching distances
  Appendix I Programs for combustion kinetics      735(12)
Index                                              747
 

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上