新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Basic Concepts of X-Ray Diffraction
发布日期:2015-12-01  浏览

Basic Concepts of X-Ray Diffraction

[BOOK DESCRIPTION]

Authored by a university professor deeply involved in X-ray diffraction-related research, this textbook is based on his lectures given during more than 20 years for graduate students. It adopts a well-balanced approach, describing basic concepts and experimental techniques, which make X-ray diffraction an unsurpassed method for studying the structure of materials. Both dynamical and kinematic X-ray diffraction is considered from a unified viewpoint, in which the dynamical diffraction in single-scattering approximation serves as a bridge between these two parts. The text emphasizes the fundamental laws that govern the interaction of X-rays with matter, but also covers in detail classical and modern applications, e.g., line broadening, texture and strain/stress analyses, X-ray mapping in reciprocal space, high-resolution X-ray diffraction in the spatial and wave vector domains, X-ray focusing, inelastic and time-resolved X-ray scattering.This unique scope, in combination with otherwise hard-to-find information on analytic expressions for simulating X-ray diffraction profiles in thin-film heterostructures, X-ray interaction with phonons, coherent scattering of Mossbauer radiation, and energy-variable X-ray diffraction, makes the book indispensable for any serious user of X-ray diffraction techniques. Compact and self-contained, this textbook is suitable for students taking X-ray diffraction courses towards specialization in materials science, physics, chemistry, or biology. Numerous clear-cut illustrations, an easy-to-read style of writing, as well as rather short, easily digestible chapters all facilitate comprehension.


[TABLE OF CONTENTS]

Preface                                            xi
Introduction                                       1  (4)
    1 Diffraction Phenomena in Optics              5  (6)
    2 Wave Propagation in Periodic Media           11 (10)
    3 Dynamical Diffraction of Particles and       21 (24)
    Fields: General Considerations
      3.1 The Two-Beam Approximation               23 (10)
      3.2 Diffraction Profile: The Laue            33 (5)
      Scattering Geometry
      3.3 Diffraction Profile: The Bragg           38 (7)
      Scattering Geometry
    4 Dynamical X-Ray Diffraction: The             45 (16)
    Ewald--Laue Approach
      4.1 Dynamical X-Ray Diffraction: Two-Beam    49 (12)
      Approximation
        4.1.1 The Role of X-Ray Polarization       50 (2)
        4.1.2 The Two-Branch Isoenergetic          52 (4)
        Dispersion Surface for X-Rays
        4.1.3 Isoenergetic Dispersion Surface      56 (5)
        for Asymmetric Reflection
    5 Dynamical Diffraction: The Darwin Approach   61 (16)
      5.1 Scattering by a Single Electron          61 (3)
      5.2 Atomic Scattering Factor                 64 (2)
      5.3 Structure Factor                         66 (2)
      5.4 Scattering Amplitude from an             68 (3)
      Individual Atomic Plane
      5.5 Diffraction Intensity in the Bragg       71 (6)
      Scattering Geometry
    6 Dynamical Diffraction in Nonhomogeneous      77 (14)
    Media: The Takagi--Taupin Approach
      6.1 Takagi Equations                         77 (7)
      6.2 Taupin Equation                          84 (7)
        6.2.1 Taupin Equation: The Symmetric       84 (2)
        Laue Case
        6.2.2 Taupin Equation: The Symmetric       86 (2)
        Bragg Case
        6.2.3 Solution of the Taupin Equation      88 (3)
        for Multilayered Structures
    7 X-Ray Absorption                             91 (6)
    8 Dynamical Diffraction in                     97 (24)
    Single-Scattering Approximation: Simulation
    of High-Resolution X-Ray Diffraction in
    Heterostructures and Multilayers
      8.1 Direct Wave Summation Method             103(18)
    9 Reciprocal Space Mapping and Strain          121(10)
    Measurements in Heterostructures
    10 X-Ray Diffraction in Kinematic              131(8)
    Approximation
      10.1 X-Ray Polarization Factor               133(2)
      10.2 Debye--Waller Factor                    135(4)
    11 X-Ray Diffraction from Polycrystalline      139(6)
    Materials
      11.1 Ideal Mosaic Crystal                    139(2)
      11.2 Powder Diffraction                      141(4)
    12 Applications to Materials Science:          145(10)
    Structure Analysis
    13 Applications to Materials Science: Phase    155(6)
    Analysis
      13.1 Internal Standard Method                158(1)
      13.2 Rietveld Refinement                     159(2)
    14 Applications to Materials Science:          161(10)
    Preferred Orientation (Texture) Analysis
      14.1 The March--Dollase Approach             165(6)
    15 Applications to Materials Science: Line     171(18)
    Broadening Analysis
      15.1 Line Broadening due to Finite           174(6)
      Crystallite Size
        15.1.1 The Scherrer Equation               175(3)
        15.1.2 Line Broadening in the Laue         178(2)
        Scattering Geometry
      15.2 Line Broadening due to Microstrain      180(1)
      Fluctuations
      15.3 Williamson--Hall Method                 181(2)
      15.4 The Convolution Approach                183(1)
      15.5 Instrumental Broadening                 184(2)
      15.6 Relation between Grain Size-Induced     186(3)
      and Microstrain-Induced Broadenings of
      X-Ray Diffraction Profiles
    16 Applications to Materials Science:          189(4)
    Residual Strain/Stress Measurements
      16.1 Strain Measurements in                  189(1)
      Single-Crystalline Systems
      16.2 Residual Stress Measurements in         190(3)
      Polycrystalline Materials
    17 Impact of Lattice Defects on X-Ray          193(10)
    Diffraction
    18 X-Ray Diffraction Measurements in           203(14)
    Polycrystals with High Spatial Resolution
      18.1 The Theory of Energy-Variable           206(11)
      Diffraction (EVD)
        18.1.1 Homogeneous Materials               210(2)
        18.1.2 Inhomogeneous Materials             212(5)
    19 Inelastic Scattering                        217(8)
      19.1 Inelastic Neutron Scattering            218(3)
      19.2 Inelastic X-Ray Scattering              221(4)
    20 Interaction of X-Rays with Acoustic Waves   225(12)
      20.1 Thermal Diffuse Scattering              228(2)
      20.2 Coherent Scattering by Externally       230(7)
      Excited Phonons
    21 Time-Resolved X-Ray Diffraction             237(4)
    22 X-Ray Sources                               241(16)
      22.1 Synchrotron Radiation                   250(7)
    23 X-Ray Focusing Optics                       257(18)
      23.1 X-Ray Focusing: Geometrical Optics      261(7)
      Approach
      23.2 X-Ray Focusing: Diffraction Optics      268(7)
      Approach
        23.2.1 Bragg--Fresnel Lenses and           268(4)
        Fresnel Zone Plates
        23.2.2 Using Asymmetric Reflections        272(3)
    24 X-Ray Diffractometers                       275(10)
      24.1 High-Resolution Diffractometers         275(5)
      24.2 Powder Diffractometers                  280(5)
References                                         285(6)
Index                                              291

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上