新书报道
当前位置: 首页 >> 数学物理化学 >> 正文
Probability and Stochastic Processes
发布日期:2015-11-30  浏览

Probability and Stochastic Processes

[BOOK DESCRIPTION]


A comprehensive and accessible presentation of probability and stochastic processes with emphasis on key theoretical concepts and real-world applications With a sophisticated approach, Probability and Stochastic Processes successfully balances theory and applications in a pedagogical and accessible format. The book's primary focus is on key theoretical notions in probability to provide a foundation for understanding concepts and examples related to stochastic processes. Organized into two main sections, the book begins by developing probability theory with topical coverage on probability measure; random variables; integration theory; product spaces, conditional distribution, and conditional expectations; and limit theorems. The second part explores stochastic processes and related concepts including the Poisson process, renewal processes, Markov chains, semi-Markov processes, martingales, and Brownian motion.Featuring a logical combination of traditional and complex theories as well as practices, Probability and Stochastic Processes also includes: * Multiple examples from disciplines such as business, mathematical finance, and engineering * Chapter-by-chapter exercises and examples to allow readers to test their comprehension of the presented material * A rigorous treatment of all probability and stochastic processes concepts An appropriate textbook for probability and stochastic processes courses at the upper-undergraduate and graduate level in mathematics, business, and electrical engineering, Probability and Stochastic Processes is also an ideal reference for researchers and practitioners in the fields of mathematics, engineering, and finance.


[TABLE OF CONTENTS]

List of Figures                            xvii
        List of Tables                             xx
Preface                                            xxi
Acknowledgments                                    xxiii
Introduction                                       1    (8)
  PART I PROBABILITY
    1 Elements of Probability Measure              9    (36)
      1.1 Probability Spaces                       10   (12)
        1.1.1 Null element of F. Almost sure       21   (1)
        (a.s.) statements. Indicator of a set
      1.2 Conditional Probability                  22   (7)
      1.3 Independence                             29   (2)
      1.4 Monotone Convergence Properties of       31   (6)
      Probability
      1.5 Lebesgue Measure on the Unit Interval    37   (8)
      (0,1]
        Problems                                   40   (5)
    2 Random Variables                             45   (42)
      2.1 Discrete and Continuous Random           48   (4)
      Variables
      2.2 Examples of Commonly Encountered         52   (13)
      Random Variables
      2.3 Existence of Random Variables with       65   (3)
      Prescribed Distribution
      2.4 Independence                             68   (4)
      2.5 Functions of Random Variables.           72   (15)
      Calculating Distributions
        Problems                                   82   (5)
    3 Applied Chapter: Generating Random           87   (36)
    Variables
      3.1 Generating One-Dimensional Random        88   (3)
      Variables by Inverting the cdf
      3.2 Generating One-Dimensional Normal        91   (3)
      Random Variables
      3.3 Generating Random Variables.             94   (15)
      Rejection Sampling Method
      3.4 Generating Random Variables.             109  (14)
      Importance Sampling
        Problems                                   119  (4)
    4 Integration Theory                           123  (34)
      4.1 Integral of Measurable Functions         124  (6)
      4.2 Expectations                             130  (13)
      4.3 Moments of a Random Variable.            143  (2)
      Variance and the Correlation Coefficient
      4.4 Functions of Random Variables. The       145  (3)
      Transport Formula
      4.5 Applications. Exercises in               148  (2)
      Probability Reasoning
      4.6 A Basic Central Limit Theorem: The       150  (7)
      DeMoivre--Laplace Theorem
        Problems                                   152  (5)
    5 Conditional Distribution and Conditional     157  (24)
    Expectation
      5.1 Product Spaces                           158  (4)
      5.2 Conditional Distribution and             162  (3)
      Expectation. Calculation in Simple Cases
      5.3 Conditional Expectation. General         165  (3)
      Definition
      5.4 Random Vectors. Moments and              168  (13)
      Distributions
        Problems                                   177  (4)
    6 Moment Generating Function.                  181  (32)
    Characteristic Function
      6.1 Sums of Random Variables. Convolutions   181  (1)
      6.2 Generating Functions and Applications    182  (6)
      6.3 Moment Generating Function               188  (4)
      6.4 Characteristic Function                  192  (7)
      6.5 Inversion and Continuity Theorems        199  (5)
      6.6 Stable Distributions. Levy               204  (9)
      Distribution
        6.6.1 Truncated Levy flight distribution   206  (2)
        Problems                                   208  (5)
    7 Limit Theorems                               213  (46)
      7.1 Types of Convergence                     213  (8)
        7.1.1 Traditional deterministic            214  (1)
        convergence types
        7.1.2 Convergence in LP                    215  (1)
        7.1.3 Almost sure (a.s.) convergence       216  (1)
        7.1.4 Convergence in probability.          217  (4)
        Convergence in distribution
      7.2 Relationships between Types of           221  (9)
      Convergence
        7.2.1 A.S. and LP                          221  (2)
        7.2.2 Probability, a.s., LP convergence    223  (3)
        7.2.3 Uniform Integrability                226  (2)
        7.2.4 Weak convergence and all the         228  (2)
        others
      7.3 Continuous Mapping Theorem. Joint        230  (2)
      Convergence. Slutsky's Theorem
      7.4 The Two Big Limit Theorems: LLN and      232  (13)
      CLT
        7.4.1 A note on statistics                 232  (2)
        7.4.2 The order statistics                 234  (4)
        7.4.3 Limit theorems for the mean          238  (7)
        statistics
      7.5 Extensions of CLT                        245  (6)
      7.6 Exchanging the Order of Limits and       251  (8)
      Expectations
        Problems                                   252  (7)
    8 Statistical Inference                        259  (34)
      8.1 The Classical Problems in Statistics     259  (1)
      8.2 Parameter Estimation Problem             260  (5)
        8.2.1 The case of the normal               262  (2)
        distribution, estimating mean when
        variance is unknown
        8.2.2 The case of the normal               264  (1)
        distribution, comparing variances
      8.3 Maximum Likelihood Estimation Method     265  (11)
        8.3.1 The bisection method                 267  (9)
      8.4 The Method of Moments                    276  (1)
      8.5 Testing, the Likelihood Ratio Test       277  (7)
        8.5.1 The likelihood ratio test            280  (4)
      8.6 Confidence Sets                          284  (9)
        Problems                                   286  (7)
  PART II STOCHASTIC PROCESSES
    9 Introduction to Stochastic Processes         293  (14)
      9.1 General Characteristics of Stochastic    294  (7)
      Processes
        9.1.1 The index set I                      294  (1)
        9.1.2 The state space S                    294  (1)
        9.1.3 Adaptiveness, nitration, standard    294  (2)
        filtration
        9.1.4 Pathwise realizations                296  (1)
        9.1.5 The finite distribution of           296  (1)
        stochastic processes
        9.1.6 Independent components               297  (1)
        9.1.7 Stationary process                   298  (1)
        9.1.8 Stationary and independent           299  (1)
        increments
        9.1.9 Other properties that                300  (1)
        characterize specific classes of
        stochastic processes
      9.2 A Simple Process -- The Bernoulli        301  (6)
      Process
        Problems                                   304  (3)
    10 The Poisson Process                         307  (24)
      10.1 Definitions                             307  (3)
      10.2 Inter-Arrival and Waiting Time for a    310  (7)
      Poisson Process
        10.2.1 Proving that the inter-arrival      311  (4)
        times are independent
        10.2.2 Memoryless property of the          315  (1)
        exponential distribution
        10.2.3 Merging two independent Poisson     316  (1)
        processes
        10.2.4 Splitting the events of the         316  (1)
        Poisson process into types
      10.3 General Poisson Processes               317  (6)
        10.3.1 Nonhomogenous Poisson process       318  (1)
        10.3.2 The compound Poisson process        319  (4)
      10.4 Simulation techniques. Constructing     323  (8)
      Poisson Processes
        10.4.1 One-dimensional simple Poisson      323  (3)
        process
        Problems                                   326  (5)
    11 Renewal Processes                           331  (40)
        11.0.2 The renewal function                333  (1)
      11.1 Limit Theorems for the Renewal          334  (10)
      Process
        11.1.1 Auxiliary but very important        336  (4)
        results. Wald's theorem. Discrete
        stopping time
        11.1.2 An alternative proof of the         340  (4)
        elementary renewal theorem
      11.2 Discrete Renewal Theory                 344  (5)
      11.3 The Key Renewal Theorem                 349  (1)
      11.4 Applications of the Renewal Theorems    350  (2)
      11.5 Special cases of renewal processes      352  (7)
        11.5.1 The alternating renewal process     353  (5)
        11.5.2 Renewal reward process              358  (1)
      11.6 The renewal Equation                    359  (4)
      11.7 Age-Dependent Branching processes       363  (8)
        Problems                                   366  (5)
    12 Markov Chains                               371  (40)
      12.1 Basic Concepts for Markov Chains        371  (12)
        12.1.1 Definition                          371  (1)
        12.1.2 Examples of Markov chains           372  (6)
        12.1.3 The Chapman--Kolmogorov equation    378  (1)
        12.1.4 Communicating classes and class     379  (1)
        properties
        12.1.5 Periodicity                         379  (1)
        12.1.6 Recurrence property                 380  (2)
        12.1.7 Types of recurrence                 382  (1)
      12.2 Simple Random Walk on Integers in D     383  (3)
      Dimensions
      12.3 Limit Theorems                          386  (1)
      12.4 States in a MC. Stationary              387  (7)
      Distribution
        12.4.1 Examples. Calculating stationary    391  (3)
        distribution
      12.5 Other Issues: Graphs, First-Step        394  (2)
      Analysis
        12.5.1 First-step analysis                 394  (1)
        12.5.2 Markov chains and graphs            395  (1)
      12.6 A general Treatment of the Markov       396  (15)
      Chains
        12.6.1 Time of absorption                  399  (1)
        12.6.2 An example                          400  (6)
        Problems                                   406  (5)
    13 Semi-Markov and Continuous-time Markov      411  (26)
    Processes
      13.1 Characterization Theorems for the       413  (4)
      General semi- Markov Process
      13.2 Continuous-Time Markov Processes        417  (3)
      13.3 The Kolmogorov Differential Equations   420  (5)
      13.4 Calculating Transition Probabilities    425  (1)
      for a Markov Process. General Approach
      13.5 Limiting Probabilities for the          426  (3)
      Continuous-Time Markov Chain
      13.6 Reversible Markov Process               429  (8)
        Problems                                   432  (5)
    14 Martingales                                 437  (28)
      14.1 Definition and Examples                 438  (2)
        14.1.1 Examples of martingales             439  (1)
      14.2 Martingales and Markov Chains           440  (2)
        14.2.1 Martingales induced by Markov       440  (2)
        chains
      14.3 Previsible Process. The Martingale      442  (2)
      Transform
      14.4 Stopping Time. Stopped Process          444  (5)
        14.4.1 Properties of stopping time         446  (3)
      14.5 Classical Examples of Martingale        449  (7)
      Reasoning
        14.5.1 The expected number of tosses       449  (2)
        until a binary pattern occurs
        14.5.2 Expected number of attempts         451  (1)
        until a general pattern occurs
        14.5.3 Gambler's ruin probability --       452  (4)
        revisited
      14.6 Convergence Theorems. L1                456  (9)
      Convergence. Bounded Martingales in L2
        Problems                                   458  (7)
    15 Brownian Motion                             465  (20)
      15.1 History                                 465  (2)
      15.2 Definition                              467  (4)
        15.2.1 Brownian motion as a Gaussian       469  (2)
        process
      15.3 Properties of Brownian Motion           471  (9)
        15.3.1 Hitting times. Reflection           474  (2)
        principle. Maximum value
        15.3.2 Quadratic variation                 476  (4)
      15.4 Simulating Brownian Motions             480  (5)
        15.4.1 Generating a Brownian motion path   480  (1)
        15.4.2 Estimating parameters for a         481  (1)
        Brownian motion with drift
        Problems                                   481  (4)
    16 Stochastic Differential Equations           485  (42)
      16.1 The Construction of the Stochastic      487  (7)
      Integral
        16.1.1 Ito integral construction           490  (2)
        16.1.2 An illustrative example             492  (2)
      16.2 Properties of the Stochastic Integral   494  (1)
      16.3 Ito lemma                               495  (4)
      16.4 Stochastic Differential Equations       499  (3)
      (SDEs)
        16.4.1 A discussion of the types of        501  (1)
        solution for an SDE
      16.5 Examples of SDEs                        502  (11)
        16.5.1 An analysis of Cox--Ingersoll--     507  (1)
        Ross (CIR) type models
        16.5.2 Models similar to CIR               507  (2)
        16.5.3 Moments calculation for the CIR     509  (2)
        model
        16.5.4 Interpretation of the formulas      511  (1)
        for moments
        16.5.5 Parameter estimation for the CIR    511  (2)
        model
      16.6 Linear Systems of SDEs                  513  (2)
      16.7 A Simple Relationship between SDEs      515  (2)
      and Partial Differential Equations (PDEs)
      16.8 Monte Carlo Simulations of SDEs         517  (10)
        Problems                                   522  (5)
  A Appendix: Linear Algebra and Solving           527  (14)
  Difference Equations and Systems of
  Differential Equations
      A.1 Solving difference equations with        528  (1)
      constant coefficients
      A.2 Generalized matrix inverse and           528  (1)
      pseudo-determinant
      A.3 Connection between systems of            529  (4)
      differential equations and matrices
        A.3.1 Writing a system of differential     530  (3)
        equations in matrix form
      A.4 Linear Algebra results                   533  (2)
        A.4.1 Eigenvalues, eigenvectors of a       533  (1)
        square matrix
        A.4.2 Matrix Exponential Function          534  (1)
        A.4.3 Relationship between Exponential     534  (1)
        matrix and Eigenvectors
      A.5 Finding fundamental solution of the      535  (3)
      homogeneous system
        A.5.1 The case when all the eigenvalues    536  (1)
        are distinct and real
        A.5.2 The case when some of the            536  (1)
        eigenvalues are complex
        A.5.3 The case of repeated real            537  (1)
        eigenvalues
      A.6 The nonhomogeneous system                538  (2)
        A.6.1 The method of undetermined           538  (1)
        coefficients
        A.6.2 The method of variation of           539  (1)
        parameters
      A.7 Solving systems when P is non-constant   540  (1)
Bibliography                                       541  (6)
Index                                              547

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上